首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新型平板式固体氧化物燃料电池的开发和性能分析   总被引:3,自引:0,他引:3  
利用商业数值分析软件和试验获得的电池各部件材料性能数据,改进了用于分析固体氧化物燃料电池(SOFC)单电池内部复杂物理过程的软件包.应用该软件包,得到了设计的新型高效平板式SOFC单电池内部各气体组分浓度、温度、电势、电流及电流密度等参数的分布规律.分析结果表明:在高燃料利用率情况下,阳极内组分扩散引起的浓度极化损失是影响电池性能的重要因素之一.该新型结构电池可有效改善电池的密封性,但其电解质需要较高的最大离子传导率.  相似文献   

2.
在作者已开发的SOFC单电池结构及其阳极上甲烷重整的有效动力学模型的基础上,构建了直接内部重整的平板式多孔电极支撑(PES)固体氧化物燃料电池(SOFC)的全三维数学模型,根据模型分析了SOFC在不同进气模式顺流和逆流工况下,单电池内的流动、传热传质、化学、电化学和电流场等物理过程,给出了单电池内气体组分、温度、电势、电流密度等参数的空间分布。分析结果表明:进气方式对于电池的性能有一定的影响,与顺流相比在相同工况下燃用同样的燃料,采用逆流进气口电池的运行性能虽然略有提高,但是电池阳极内存在较高温度的热点,并且热点的位置不确定。  相似文献   

3.
固体氧化物燃料电池(SOFC)内存在复杂的多物理场传递过程,这些过程对电池的性能具有重要的影响.以某实际生产的 SOFC 为对象,建立了其三维模型,模型描述了以合成气为燃料时其内部发生的传质、传热、化学及电化学反应等多物理场过程.根据模拟结果,给出了两种合成气组分下电池内温度、气体组分、化学反应速率以及电流密度等参数的分布.结果显示:电池内温度分布很不均匀,且合成气中 H2初始含量对电池内温度分布具有重要影响,H2含量越小,电池内最高温度越低,但局部区域温度梯度会变大;化学反应速率和电流密度分布也不规律,其大小都受到当地温度和气体成分分布的影响,且电流密度最大值处于肋片、流道和电极的交界处.  相似文献   

4.
全钒液流电池(VFB)的电堆由若干单电池叠合在一起组成,通过公共流道和电解液分配管路连通多个单电池,电堆内部的电势差引起电解液中的离子定向迁移,形成旁路电流导致能量损耗.本文分析产生旁路电流和能量损耗的电堆结构机制,利用等效电路模型计算电堆内部旁路电流的分布,提出抑制和减小旁路电流的措施.通过设计合理的电解液流动管路,能够有效减缓旁路电流的影响,减小充电/放电循环过程的电荷损失,提高储能过程的能量效率.  相似文献   

5.
为研究流道结构对质子交换膜燃料电池(PEMFC)反应气体质量传输及输出性能的影响,建立翅脉流道、叶脉流道及蛇形流道的三维PEMFC几何模型,并对比3种流道的反应气体浓度分布、压力分布及电流密度分布,最后对翅脉流道结构参数进行优化。结果表明,与蛇形流道、叶脉流道相比,翅脉流道能明显改善流道和扩散层内反应气体浓度分布的均匀性,有利于强化反应气体向催化层的质量传递;翅脉流道能减小气体压力分布梯度,使反应气体扩散更加充分;翅脉流道的平均膜电流密度更大,有利于促进电化学反应稳定进行;翅脉流道能改善PEMFC的输出性能,翅脉流道峰值功率密度比蛇形流道、叶脉流道分别提高7.72%和6.25%;减小翅脉流道的直流道长度或圆弧流道圆心角,可提升翅脉流道输出性能。  相似文献   

6.
全钒液流电池因其选址自由、效率高、寿命长以及安全性高等特点,广泛应用于大规模储能领域,然而现有电池结构单一,无法满足储能领域高速发展的需求。为提高全钒液流电池电化学性能,采用数值模拟方法,针对新型径向流动全钒液流电池单元,建立电池单元内部电化学反应与热质传递耦合作用数学物理模型,获得了不同电解液进口数量下新型电池单元内部多物理场耦合输运特性分布规律,包括电解液速度场、压降、离子浓度以及电极电势的分布规律。结果表明,电池电解液进口数量的增加,可以有效改善电解液在多孔电极内的输运性能,提升多孔电极内部离子浓度分布均匀性,削弱离子浓度极化现象,提高电极电势,增强电池性能。同时,在多孔电极入口处设置电解液分配管,可以有效减小电解液流动阻力,提升电解液分配均匀性,进一步提升电池性能。仿真模拟的研究结果可为全钒液流电池结构的优化设计提供参考。  相似文献   

7.
液流电池图形用户界面(graphic user interface, GUI)整合了电池堆内部电流分布、流体阻力、稳态自然对流散热、结构封装压力和螺柱选型。基本满足研发人员独立进行多学科计算的要求,能初步评估一款电池堆的性能。多分堆构型液流电池堆的等效电路图采用网格法进行简化,并结合基尔霍夫电压定律求解恒流运行时的循环电流,并进一步计算出堆内逐节电池的实际通过电流、板框流道内的旁路电流,以及堆内主通道内汇总的旁路电流。电池堆流体阻力受板框流道设计、外接管路、电极参数和液位落差影响。矩形流道的达西摩擦系数采用经验方程计算,可将湍流阻力计算误差控制到10%,层流阻力计算误差极低,局部阻力系数采用达西3K参数式估算。电极流阻受电解液流经长度、电极渗透率和电解液黏度的影响。由于渗透率公式的计算结果偏离实验测量值较大,所以界面设定为实测值输入。电池堆按照有保温和无保温考虑在集装箱内的自然对流稳态散热,需要的输入参数包括电池堆的几何尺寸、保温层厚度、环境温度和堆内温度。封装力计算所用的单电池结构是板框配合内嵌盖板的形式。力主要用于找平板材翘曲、将密封垫压入密封槽、抵消内部液体压力和材料热膨胀,再以...  相似文献   

8.
通过对实验中管式SOFC堆的数学建模仿真方法,研究实验中的百瓦级4×4管式电池堆内部的流体流动、传热和组分浓度等特性,分析电池参数对电池内部气体流速、温度和浓度分压分布。计算结果和实验测试发现:流场和压力场基本均匀,温度场变化在±34.7K,而阵列电池管开路电压测试值在1.0~1.15vg间,基本满足电堆工作要求。  相似文献   

9.
提出梳齿状pn结单晶硅太阳电池,通过计算机TCAD模拟的方法,对单晶硅太阳电池的梳齿状pn结结构对电池内部电流分布和电池效率造成的影响进行模拟分析和理论研究。研究结果表明采用pn结梳齿状结构对单晶硅太阳电池的电学性能有一定程度上的优化,但同时也带来电流集边等非理想效应。在模拟范围内,梳齿宽度为1μm,深度为30μm的梳齿状pn结单晶硅电池拥有更理想的电池效率。  相似文献   

10.
电化学能量储存和转换技术已成为解决能源和环境问题的重要手段。如何解决大规模工业化应用过程中电化学能量储存和转换体系相关材料、器件的研发、设计、优化以及管理控制等关键科学和技术问题已经成为一个热点。本工作以锂离子电池、超级电容器和电解水制氢3个具体实例为对象,建立电化学系统多物理场模型。基于实验验证模型,探索了大容量软包电池内芯传递现象、电化学反应过程及电流分布间的相互作用;引入“静电像相关性”概念,研究超级电容器多级孔道内双电层及赝电容的分布规律;考虑PEM电解水制氢工程学上的瞬态问题,研究制氢装置电化学表征特性模拟及两相流传递现象对电解性能的影响。结果表明,大电流操作、导热性差的电池内芯材料显著加剧电池内芯内部电流及反应非均匀性,超级电容器微孔和介孔配比影响双电层及赝电容分布及离子传递过程,制氢装置部件需要高亲水性材料且保持流道中高液相饱和度来增强电解性能。由此可见,多物理场模型可以为材料设计、实际物理过程分析以及系统优化等方面提供理论和设计指导。  相似文献   

11.
当年阿波罗登月成功,极大地震动了世界。可是多数人并不了解,为登月飞船供应电力和饮水的是谁?原来它是燃料电池。燃料电池是继火力、水利、核能之后的第4种发电站。众所周知,水被电解以后变成氢和氧。燃料电池却是能让其发生反向反应的装置。它利用触媒,让氢和氧平稳地发生反应变成水,同时产生电流。燃料电池使用氢或天然气为燃料。它排放的有害气体极少;它没有运动机械,直接产生电流,噪音小;燃料电池可以分散地配置于耗电区内,避免了长途输电。由于燃料电池具有这些优点,因此它受到世界各国的重视和青睐。不过,燃料电池所需的触媒是贵金属…  相似文献   

12.
针对常规流场质子交换膜燃料电池提出了三维非等温数学模型。模型考虑了电化学反应动力学以及反应气体在流道和多孔介质内的流动和传递过程,详细研究了水在质子膜内的电渗和扩散作用。计算结果表明,反应气体传质的限制和质子膜内的水含量直接决定了电极局部电流密度的分布和电池输出性能;在电流密度大于0.3~0.4A/cm2时开始出现水从阳极到阴极侧的净迁移;高电流密度时膜厚度方向存在很大的温度梯度,这对膜内传递过程有较大影响。  相似文献   

13.
由电池构成的大型储能在清洁能源占比高的电力系统里占有重要地位,电池的短路计算和保护配置十分重要。本文首先提出了单体电池短路模型,并用短路实验验证了模型有效性。在此基础上,推导了簇内和簇间短路的短路电流通用计算公式,计算公式可以广泛应用于任意电池数量的大型储能系统之中,全面地覆盖了各种极间及极地短路情况,在算例中验证理论计算公式与仿真误差在4%以内可以满足保护分析需要。分析了影响短路电流的因素和变化规律,发现了簇内短路时短路点内部电池越多则其他簇和短路点电流越大、簇间短路时模组差对短路电流影响等结论。根据理论计算公式,研究了大型储能电站各种保护方案的利弊,提出了基于熔断器的保护配置方案,并分析了最有利的熔断器安装位置,总结出在此方案下各个熔断器最大短路电流的计算方法。本文提出的保护配置方案覆盖了短路电流计算、器件选型等多个方面,可以广泛应用于各种电池储能电站前期方案设计之中。  相似文献   

14.
电池制造过程出现的缺陷问题会极大影响电池产品的安全性等,其中产线金属异物侵入可能导致自发性内短路甚至引发热失控,然而目前关于在电池内部的演化机理及相应的外在表征的研究较少,尤其是针对微小金属异物的研究。因此本研究在电池中植入百微米直径铜颗粒,模拟产线金属异物侵入形成缺陷电池,分析了缺陷电池内短路电流特征,拆解研究了内短路区域的微观结构,通过模型仿真了内短路区域的电位分布,综合解释了缺陷对产线关键检测指标K值(电压下降率)的影响规律与机制,并在实际试制线大容量电池上进行了验证。相关研究成果可用于提高产线缺陷检出率,预防潜在的安全事故。研究结果表明,铜颗粒等金属异物侵入电池后,可能导致正极-颗粒-负极和正极-负极两种模式的内短路,内短路电流在正极中产生的电位梯度可抑制颗粒的进一步溶解,从而使得在K值测试条件下的两种内短路模式均会达到平衡状态。两种模式的内短路程度相近,内短路电流处在0.1~1 mA量级。相同的内短路电流对于不同容量单体的K值影响不同,产线上为保证检测效果,随着电池产品容量的增加,K值检测阈值及正常电池的基准值需要相应降低。  相似文献   

15.
符号表m-质量/kg W-质量流量/kg·s-1N-电池个数I-电流/AM-摩尔分子质量F-法拉第常数/kg·mol-1/9.6 487×104C·mol-1R-气体常数/J·(mol·K)-1T-温度/KV-体积/m3A-反应面积/m2nd-电渗透系数Dw-扩散系数/m2·s-1cwa、cwc-膜阳极侧和阴极tm-膜厚度/m侧的水浓度/mol·m-2kp-水力  相似文献   

16.
2 单电池模型文献中最常引用的单电池模型是Wolf和Wilemski[4 ] (1983)的模型。它以两维、静态的形式处理单体的反应过程 ,考虑了电化学反应的气体利用率、电池组件与气流间的热传导、伴随总的流体增加的能量转换和电池组件与外界的热交换的关系等。采用分立的多孔电极模型可预测电流密度对电池温度和气体组分的依赖性。Watanabe等[3 ] (1991)将Wolf和Wilemski[4 ] 的模型推广到暂态的情形 ,并提出了一个新的基于经验的单体局部性能与工作条件的关系的方程。BarbaraBosio[8] (1999)研究了气体…  相似文献   

17.
迭层太阳电池中电流、电压及功率分配的理论分析   总被引:2,自引:0,他引:2  
为了从理论上了解迭层太阳电池的工作特性,根据单结太阳电池直流模型提出了迭层电池的直流模型。并在模型基础上给出了描述迭层电池工作特性的方程组。在迭层电池模型和方程组的基础上,讨论了迭层电池开路状态和短路状态下电池内部电流,电压及功率分配。重点讨论了迭层电池对外做功情况下电流,电压功率在迭层电池中的分配。论证了迭层电池中,要求获得最大的功率输出。其子电池电流必须满足匹配关系。  相似文献   

18.
采用欧拉-欧拉双流体模型,用基于全局反应的涡耗散概念方法描述循环流化床内挥发份均相燃烧反应,用Fluent软件结合UDF(用户自定义函数)热态模拟得到炉内流动和燃烧状况,模拟得到的沿炉高气温分布和出口烟气组分与实验值吻合,验证了模型的准确性,并且采用EDC-G方法优于采用ED-FR方法。在此基础上,分析了炉内颗粒速度和浓度分布,得出炉内主要气体分布。得到沿炉高反应速率分布曲线,C和O_2反应速率高于C和CO反应速率,密相区CO与O_2反应速率高于CH_4与O_2,稀相区CH_4与O_2反应速率高于CO和O_2反应速率。  相似文献   

19.
为了研究扩散层孔隙率对质子交换膜燃料电池(PEMFC)性能的影响,采用COMSOL软件,通过数值模拟得出气体扩散层不同孔隙率(0.2,0.4,0.6和0.8)时,单直通道和具有楔形肋片(长1 mm,高1.5 mm,宽2 mm)的PEMFC性能曲线、阴极氧气质量分数分布和水质量分数分布。结果表明:扩散层孔隙率对燃料电池性能具有较大影响,随着扩散层孔隙率从0.2增大到0.8,PEMFC的电流密度逐渐增加,最大可达847 mA/cm~2;相对于单直通道,增加孔隙率比添加楔形肋片更利于提升电池性能;在孔隙率为0.6和0.8时,氧气更易扩散到反应区,排水效果更好。  相似文献   

20.
为研究磷酸铁锂离子电池在泄压阀打开之后,释放的气体在模组中扩散行为,本文基于实际100%SOC磷酸铁锂离子电池模组尺寸建立1:1几何模型,模拟电池模组内部电池发生热失控、泄压阀打开及释放气体的扩散行为;通过FDS软件对其进行仿真研究,分析磷酸铁锂离子电池在热失控时释放H2、CO、CH4和CO2气体的扩散规律.研究结果表...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号