共查询到17条相似文献,搜索用时 78 毫秒
1.
孔径可控的多孔羟基磷灰石的制备工艺研究 总被引:14,自引:0,他引:14
采用添加造孔剂法,选择合适的造孔剂聚甲基丙烯酸甲酯(PMMA),通过严格筛分,可烧结制得孔径可控的多孔基磷灰石陶瓷,气孔率可从20%到50%变化。并对烧结多孔体中孔的结构、孔径分布与特征,影响气孔率和力学性能的因素进行了研究与讨论。 相似文献
2.
研究利用造孔剂法制备高度贯通的多孔羟基磷灰石(HA)支架,孔隙率约为78%,并利用聚己内酯(PCL)分别复合纳米HA(nHA)或微纳米生物玻璃(nBG)粉末对其进行涂覆改性,粉末的添加量均为10%~40%(质量分数)。4种类型支架分别记为HA、PCL/HA、nHA-PCL/HA和nBG-PCL/HA。实验结果发现,nHA-PCL/HA和nBG-PCL/HA复合支架最大抗压强度分别为1.41~1.98 MPa和1.35~1.78MPa。4类支架矿化实验显示,浸泡21d后nBG-PCL/HA表面促进生成较多的磷灰石矿化物;细胞实验结果显示细胞在4类支架上均生长良好,说明支架具有良好的生物相容性。支架在实验犬背部肌肉组织内植入2个月的组织学检测显示,4种支架内均有新骨形成,尤其是nHA-PCL/HA和nBG-PCL/HA孔内有更多的新生骨组织,说明这两种支架表面复合涂层中的生物活性纳米颗粒对诱导新骨生成具有积极的促进作用。 相似文献
3.
5.
6.
纳米羟基磷灰石/丝素蛋白多孔支架材料的制备和表征 总被引:1,自引:0,他引:1
采用硝酸钙-丝素蛋白溶液与磷酸钠反应仿生合成纳米羟基磷灰石/丝素蛋白(n-HA/SF)复合材料,并以NaHCO3和NaCl为致孔剂制备了多孔复合支架材料,采用TEM、IR、SEM和EDX对其进行了表征.结果表明,复合材料中HA的粒径在20~50nm之间,是一种CO2-3部分替代型弱结晶类骨针晶,在形貌和尺寸等方面类似于人体骨磷灰石晶体;HA和SF两相间存在强烈的键合作用,复合支架材料呈高度多孔结构,孔壁上富含微孔,孔隙间贯通性高.EDX分析结果表明,HA在有机基体中分布均匀,钙磷元素比为1.66,当复合材料和致孔剂的比例为1:0.5时,其抗压强度可达20.23MPa. 相似文献
7.
采用溶液浇铸法,以二氯甲烷作为溶剂,制备了聚己内酯/羟基磷灰石晶须(PCL/HAw)复合多孔支架,并进行了正交试验,综合分析了不同配方量的PCL和HAw对材料机械性能的影响。结果表明,可通过控制PCL的量来控制支架的力学性能,通过加入HAw提高支架的亲水性能,支架的接触角实验显示其接触角为81°;PCL的结晶度会随着HAw含量的增加而增强,复合多孔支架的抗拉强度为1.43M~9.21MPa,并在PCL与HAw的质量比为100∶3时达到最大;细胞毒性实验显示,PCL/HAw复合多孔支架细胞毒性为0,满足生物材料使用要求。 相似文献
8.
为提高骨组织工程支架材料的力学性能,改善其生物活性,综合天然与合成高分子的优点,采用溶液共混相分离法制备出聚己内酯(PCL)-壳聚糖(CS)多孔支架材料, 并进一步采用离心注浆法填充具有生物活性的纳米羟基磷灰石(HA)-聚乙烯醇(PVA)复合浆料, 制备了n-HA-PVA/PCL-CS复合多孔支架材料, 改善了PCL-CS支架材料力学性能。采用扫描电子显微镜、红外光谱、元素分析、孔隙率和抗压强度试验对材料进行了表征。结果表明, PCL-CS支架材料的内部具有蜂窝状的相互贯通的孔隙结构,孔隙率可以达到60%~80%。CS含量越大,孔隙率越大,而抗压强度越小。填充后的n-HA-PVA/PCL-CS复合多孔支架材料,孔隙率有所下降,但仍大于60%,而其弹性模量可提高至25.71 MPa。 相似文献
9.
10.
利用相转移法制备了纳米羟基磷灰石/聚酰胺66(n-HA/PA66)复合多孔支架.用不同浓度(1%、3%、5%)的壳聚糖(CS)溶液对多孔支架进行了表面修饰.用扫描电镜(SEM)和材料力学试验机对多孔支架修饰前后的形貌和力学性能进行了表征.研究了经CS修饰的n-HA/PA66复合多孔支架在磷酸盐缓冲溶液(PBS)中的浸泡行为,并初步研究了其与MG63细胞的细胞相客性.结果显示,多孔支架具有较为理想的孔隙结构和贯通性,经CS修饰后,其力学强度有显著提高.体外浸泡结果显示,随着漫泡时间的增加,支架表面微结构变得粗糙和多孔化.细胞实验表明该支架有利于细胞在表面的粘附、铺展、生长和增殖. 相似文献
11.
纳米羟基磷灰石/聚己内酯-壳聚糖复合多孔支架材料的制备与表征 总被引:3,自引:0,他引:3
结合纳米羟基磷灰石(n-HA)和聚合物的优点,采用溶液共混相分离制备出聚己内酯(PCL)-壳聚糖(CS)多孔支架材料,并采用离心注浆填充新方法对支架材料进行增强,制备复合多孔支架材料。用扫描电子显微镜、红外光谱、元素分析、孔隙率和抗压强度对材料进行了表征。结果表明复合材料具有良好的界面结合;孔隙率分析表明材料具有60%~80%的孔隙率,符合骨组织工程对支架材料的要求;力学性能测试表明材料的压缩强度得到大幅度提高。 相似文献
12.
高强度力学性能丝素/羟基磷灰石多孔支架材料的初步制备 总被引:1,自引:0,他引:1
以丝素和羟基磷灰石为基材,磷酸盐缓冲液为溶剂,戊二醛为交联剂制备丝素/羟基磷灰石支架材料,对丝素生物材料在骨材料中的开发应用有积极意义。研究表明,丝素/羟基磷灰石复合材料具有结晶结构和β构象。当丝素与羟基磷灰石的比例为6/4时,支架材料的弹性模量和压缩强度达到最大,分别为48.087 MPa和1.427 MPa,孔隙率... 相似文献
13.
A Simple Modification Method to Obtain Anisotropic and Porous 3D Microfibrillar Scaffolds for Surgical and Biomedical Applications 下载免费PDF全文
Vahid Hosseini Olivera Evrova Simon P. Hoerstrup Viola Vogel 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(4)
In native tissues, cellular organization is predominantly anisotropic. Yet, it remains a challenge to engineer anisotropic scaffolds that promote anisotropic cellular organization at macroscopic length scales. To overcome this challenge, an innovative, cheap and easy method to align clinically approved non‐woven surgical microfibrillar scaffolds is presented. The method involves a three‐step process of coating, unidirectional stretching of scaffolds after heating them above glass transition temperature, and cooling back to room temperature. Briefly, a polymer coating is applied to a non‐woven mesh that results in a partial welding of randomly oriented microfibers at their intersection points. The coated scaffold is then heated above the glass transition temperature of the coating and the scaffold polymer. Subsequently, the coated scaffold is stretched to produce aligned and three dimentional (3D) porous fibrillar scaffolds. In a proof of concept study, a polyglycolic acid (PGA) micro‐fibrillar scaffold was coated with poly(4‐hydroxybutirate) (P4HB) acid and subsequently aligned. Fibroblasts were cultured in vitro within the scaffold and results showed an increase in cellular alignment along the direction of the PGA fibers. This method can be scaled up easily for industrial production of polymeric meshes or directly applied to small pieces of scaffolds at the point of care. 相似文献
14.
Structurally and Functionally Optimized Silk‐Fibroin–Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo 下载免费PDF全文
Weili Shi Muyang Sun Xiaoqing Hu Bo Ren Jin Cheng Chenxi Li Xiaoning Duan Xin Fu Jiying Zhang Haifeng Chen Yingfang Ao 《Advanced materials (Deerfield Beach, Fla.)》2017,29(29)
Articular cartilage repair remains a great challenge for clinicians and researchers. Recently, there emerges a promising way to achieve one‐step cartilage repair in situ by combining endogenic bone marrow stem cells (BMSCs) with suitable biomaterials using a tissue engineering technique. To meet the increasing demand for cartilage tissue engineering, a structurally and functionally optimized scaffold is designed, by integrating silk fibroin with gelatin in combination with BMSC‐specific‐affinity peptide using 3D printing (3DP) technology. The combination ratio of silk fibroin and gelatin greatly balances the mechanical properties and degradation rate to match the newly formed cartilage. This dually optimized scaffold has shown superior performance for cartilage repair in a knee joint because it not only retains adequate BMSCs, due to efficient recruiting ability, and acts as a physical barrier for blood clots, but also provides a mechanical protection before neocartilage formation and a suitable 3D microenvironment for BMSC proliferation, differentiation, and extracellular matrix production. It appears to be a promising biomaterial for knee cartilage repair and is worthy of further investigation in large animal studies and preclinical applications. Beyond knee cartilage, this dually optimized scaffold may also serve as an ideal biomaterial for the regeneration of other joint cartilages. 相似文献
15.
16.
Self‐assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures 下载免费PDF全文
Shu Luo Yufeng Luo Hengcai Wu Mengya Li Lingjia Yan Kaili Jiang Liang Liu Qunqing Li Shoushan Fan Jiaping Wang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(1)
17.