首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation).  相似文献   

2.
Terpene profile of Muscat wines fermented by Saccharomyces species and hybrid yeasts was investigated. The amount of geraniol decreased in most wines with respect to the initial must except for Saccharomyces bayanus wines. On the other hand, alpha-terpineol amount was higher in wines fermented by Saccharomyces cerevisiae and hybrid yeasts. The amount of linalool was similar in all wines and comparable to the amount in the initial must. Lower levels of beta-d-glucosidase activity were found in the hybrid yeasts with respect to S. cerevisiae. Moreover, no relationship between beta-d-glucosidase activity and terpenes profile in Muscat wines fermented with Saccharomyces species and hybrids was found. Growth of yeasts on minimum medium supplemented with geraniol showed bioconversion of geraniol into linalool and alpha-terpineol. Percentages of geraniol uptake and bioconversion were different between Saccharomyces species and hybrids. Strains within S. bayanus, Saccharomyces kudriavzevii and hybrids showed higher geraniol uptake than S. cerevisiae, whereas the percentage of produced linalool and alpha-terpineol was higher in S. cerevisiae and hybrid yeasts than in S. bayanus and S. kudriavzevii. The relationship between geraniol uptake and adaptation of Saccharomyces species to grow at low temperature is discussed.  相似文献   

3.
Spontaneous fermentations are still conducted by several wineries in different regions of Argentina as a common practice. Native Saccharomyces strains associated with winery equipment, grape and spontaneous fermentations of Malbec musts from "Zona Alta del Río Mendoza" region (Argentina) were investigated during 2001 and 2002 in the same cellar. Low occurrence of Saccharomyces on grapes and their limited participation during fermentation were confirmed. Strain sequential substitution during fermentation was observed. Between 30% and 60% of yeast population at the end of fermentation was coming from yeasts already present in the winery. A stable and resident Saccharomyces micro-flora in the winery was confirmed. It exhibited a dynamic behaviour during season and between years. Commercial strains were found during fermentation in different percentages, but their presence on winery equipment was low. The present work represents a first approach to winery yeast and spontaneous fermentation Saccharomyces population dynamics in an important viticultural region from Argentina that has never been characterized before. The results obtained have an important significance for the local industry, showing for the first time the real situation of the microbial ecology of alcoholic fermentation in an industrial winery from Mendoza, Argentina.  相似文献   

4.
5.
The presence of Saccharomyces cerevisiae in grape berries and fresh musts is usually very low. However, as fermentation progresses, the population levels of this species considerably increase. In this study, we use the concept of fitness advantage to measure how increasing ethanol concentrations (0-25%) and temperature values (4-46 °C) in wine fermentations affects competition between S. cerevisiae and several non-Saccharomyces yeasts (Hanseniaspora uvarum, Torulaspora delbrueckii, Candida zemplinina, Pichia fermentans and Kluyveromyces marxianus). We used a mathematical approach to model the hypothetical time needed for S. cerevisiae to impose itself on a mixed population of the non-Saccharomyces species described above. This approach also took into consideration the influence of environmental factors and the initial population levels of S. cerevisiae (0.1, 1.0 and 10.0%). Our results suggest that Saccharomyces niche construction via ethanol production does not provide a clear ecological advantage (at least not until the ethanol concentration exceeds 9%), whereas a temperature rise (above 15 °C) does give S. cerevisiae a considerable advantage. The initial frequency of S. cerevisiae considerably influences the time it needs to impose itself (until it reaches a final frequency of 99% in the mixed culture), the lowest time values being found at the highest initial frequency. In light of these results, the application of low temperatures in the wine industry could favor the growth and survival of non-Saccharomyces species for a longer period of time.  相似文献   

6.
Kinetics of alcoholic fermentation by Saccharomyces cerevisiae wine strains in a synthetic medium with high sugar content were established for different nitrogen initial content and are presented for four strains. The composition of the medium was close to grape must except that the nitrogen source consisted mainly in ammonium and was varied from 120 to 290 mg N/l assimilable nitrogen. The overall nitrogen consumed was also estimated in order to determine nitrogen requirement variability. The effect of assimilable nitrogen was in general greater on sugar consumption rates than on growth and three kinds of effect on sugar consumption rates were observed: (i) existence of an optimal initial nitrogen level for a maximal sugar consumption rate (inhibition if excess), (ii) no effect of nitrogen beyond the intermediary level (saturation), (iii) sugar consumption rate proportional to the initial nitrogen level (activation). In all cases, the amount of consumed nitrogen increased with its initial concentration and so did the fructophilic capacity of the strains. The optimal requirement varied from 0.62 to 0.91 mg N/g of sugars according to different strains. There was no general correlation between the sugar assimilation rates and the nitrogen requirement.  相似文献   

7.
The present study was undertaken with the purpose of selecting yeasts from wine grapes that are able to produce extracellular cold-active pectinases. After two consecutive selections yeast isolates were identified by pheno- and genotyping, and pectinolytic activity was preliminarily characterised at proximate winemaking conditions. Out of 1023 indigenous microorganisms isolated from grape skins of D.O. San Rafael (Mendoza, Argentina) viticulture region, 565 (55%) showed pectinolytic activity on plates and, among them, 96 (17%) were chosen in a primary selection. Ten isolates were finally selected for exhibiting the greatest activity at low temperature (12 °C) and identified as Aureobasidium pullulans. GM-R-22 strain demonstrated the highest pectinolytic activity (0.751 U/mL) at pH 3.5 and 12 °C. Yeast pectinases were constitutively produced. This study is the first report about strains of A. pullulans producing pectinases which are able to show good activity at low temperature. These pectinolytic strains could be of interest in wine production.  相似文献   

8.
The complex microbial ecosystem of grape must and wine harbours a wide diversity of yeast species. Specific oligonucleotide primers for real-time quantitative PCR(QPCR) were designed to analyse several important non-Saccharomyces yeasts (Issatchenkia orientalis, Metschnikowia pulcherrima, Torulaspora delbrueckii, Candida zemplinina and Hanseniaspora spp.) and Saccharomyces spp. in fresh wine must, during fermentation and in the finished wine. The specificity of all primer couples for their target yeast species were validated and the QPCR methods developed were compared with a classic approach of colony identification by RFLP-ITS-PCR on cultured samples. Once the methods had been developed and validated, they were used to study these non-Saccharomyces yeasts in wine samples and to monitor their dynamics throughout the fermentation process. This study confirms the usefulness and the relevance of QPCR for studying non-Saccharomyces yeasts in the complex yeast ecosystem of grape must and wine.  相似文献   

9.
In the last few years there is an increasing interest on the use of mixed fermentation of Saccharomyces and non-Saccharomyces wine yeasts for inoculation of wine fermentations to enhance the quality and improve complexity of wines. In the present work Lachancea (Kluyveromyces) thermotolerans and Saccharomyces cerevisiae were evaluated in simultaneous and sequential fermentation with the aim to enhance acidity and improve the quality of wine.  相似文献   

10.
The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol.  相似文献   

11.
Teresa Garde-Cerdán 《LWT》2008,41(3):501-510
In this work the effect of the addition of different quantities of amino acids to a nitrogen-deficient must on the formation of volatile compounds during the wine alcoholic fermentation was studied. To do so, fermentations of Mazuelo must were carried out, to which were added ammonium and 45, 120, and 250 mg/l of amino acids. The results showed that the formation of total esters, isoamyl acetate, and 2-phenylethyl acetate was directly proportional to the quantity of amino acids added to the must while the synthesis of diethyl succinate, and ethyl 3-hydroxybutyrate was inversely proportional to this addition. The alcohols, with the exception of tyrosol and 2-phenylethanol, did not show any direct correlation between their formation and the addition of amino acids. The quantity of amino acids added to the must favoured the formation of total acids but it had scant influence on the individual synthesis of the acids. So, it may be stated that, in general, the addition of amino acids in the concentrations under study to a nitrogen-deficient must, favoured the formation of volatile compounds in the wine.  相似文献   

12.
Three selected autochthonous and one commercial Saccharomyces cerevisiae strains used as starters for fermentation of the same Gewürztraminer must were compared in terms of their influence on primary and secondary aroma of wine. At the same testing conditions, each strain S. cerevisiae produced individual metabolites in different concentrations and combinations which significantly influenced resulting wine flavour. Higher concentrations of 2-phenylethanol and cis-rose oxide, associated with S. cerevisiae TC-NAX-A, considerably distinguished this strain from the others. Occurrence of these VOCs has important influence on sweet rose-like flavour typical for Gewürztraminer wine. This paper deals with the characterization of chemical substances that directly affect the primary varietal aroma of Gewürztraminer wine, while looking for a tool to produce an original and attractive product in form of suitable autochthonous strain S. cerevisiae.  相似文献   

13.
Although redox state is a well-known key process parameter in microbial activity, its impact on wine volatile aroma compounds produced during fermentation has not been studied in detail. In this study we report the effect of reductive and microaerobic conditions on wine aroma compound production using different initial amounts of yeast assimilable nitrogen (YAN: 180 and 400 mg N/l) in a simil grape must defined medium and two S. cerevisiae strains commonly used in wine-making. In batch fermentation culture conditions, reductive conditions were obtained using flasks plugged with Muller valves filled with sulphuric acid; while microaerobic conditions were attained with defined cotton plugs. It was found that significant differences in redox potential were obtained using the different plugs, and with variation of over 100 mV during the main fermentation period.  相似文献   

14.
Presumptive lactic acid bacterial cocci were found in six sourdoughs (out of 20) from the Abruzzo region (central Italy) and subjected to phenotypic and genotypic characterization. A total of 21 isolates, recognized as seven strains by randomly amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR) typing, were identified by a polyphasic approach, consisting of 16S rRNA gene sequencing, multiplex PCR assays and physiological features, as Enterococcus faecium and Pediococcus pentosaceus. Four strains belonging to those species and previously isolated from wheat kernels were inoculated in sterile flour to verify their capacity to grow in sourdough environment. Doughs with several dual bacterial combinations, including Lactobacillus sanfranciscensis, were propagated for 11 days and pH measurements and bacterial counts were carried out.  相似文献   

15.
Discovery, characterisation and use of novel yeast strains for winemaking is increasingly regarded as a way for improving quality and to provide variation, including subtle characteristic differences in fine wines. The objective of this work was to evaluate the use of a native apiculate strain, selected from grapes, Hanseniaspora vineae (H. vineae) 02/5A. Fermentations were done in triplicate, working with 225 L oak barrels, using a Chardonnay grape must. Three yeast fermentation strategies were compared: conventional inoculation with a commercial Saccharomyces cerevisiae strain, ALG 804, sequential inoculation with H. vineae and then strain ALG 804 and spontaneous fermentation. Yeast strain identification was performed during fermentation, in which the apiculate strain was found to be active, until 9% of alcohol in volume, for the co-fermentation and the spontaneous fermentation was completed by three native S. cerevisiae strains. Basic winemaking parameters and some key chemical analysis, such as concentration of glycerol, biogenic amines, organic acids, and aroma compounds were analysed. Sensory analysis was done using a trained panel and further evaluated with professional winemakers. Sequential inoculation with H. vineae followed by S. cerevisiae resulted in relatively dry wines, with increased aroma and flavour diversity compared with wines resulting from inoculation with S. cerevisiae alone. Wines produced from sequential inoculations were considered, by a winemaker’s panel, to have an increased palate length and body. Characteristics of wines derived from sequential inoculation could be explained due to significant increases in glycerol and acetyl and ethyl ester flavour compounds and relative decreases in alcohols and fatty acids. Aroma sensory analysis of wine character and flavour, attributed to winemaking using H. vineae, indicated a significant increase in fruit intensity described as banana, pear, apple, citric fruits and guava. GC analysis of the relative accumulation of 23 compounds to significantly different concentrations for the three fermentation strategies is discussed in relation to aroma compound composition.  相似文献   

16.
The detection and quantification of wine yeast can be misleading due to under or overestimation of these microorganisms. Underestimation may be caused by variable growing rates of different microorganisms in culture media or the presence of viable but non-cultivable microorganisms. Overestimation may be caused by the lack of discrimination between live and dead microorganisms if quantitative PCR is used to quantify with DNA as the template. However, culture-independent methods that use dyes have been described to remove the DNA from dead cells and then quantify the live microorganisms. Two dyes have been studied in this paper: ethidium monoazide bromide (EMA) and propidium monoazide bromide (PMA). The technique was applied to grape must fermentation and ageing wines. Both dyes presented similar results on yeast monitoring. Membrane cell recovery was necessary when yeasts were originated from ethanol-containing media. When applied to grape must fermentation, differences of up to 1 log unit were seen between the QPCR estimation with or without the dye during the stationary phase. In ageing wines, good agreement was found between plating techniques and QPCR. Most of the viable cells were also culturable and no differences were observed with the methods, except for Zygosaccharomyces bailii and Dekkera bruxellensis where much higher counts were occasionally detected by QPCR. The presence of excess dead cells did not interfere with the quantification of live cells with either of the dyes.  相似文献   

17.
Enterococcus faecium strains were isolated from red wines undergoing malolactic fermentation and identified by comparison of their 16S rDNA gene sequences with those included in the GenEMBL Databases. The tyrosine decarboxylase gene was identified in all the strains analysed by PCR using gene-specific primers and the ability to produce tyramine in a synthetic media was analysed by RP-HPLC. Survival of an E. faecium strain was also evaluated in microvinification assays using two different musts with different ethanol concentrations (10% and 12% (v/v)). Tyramine production was monitored during the vinification trials. Our results suggest that E. faecium strains isolated from wine are able to produce tyramine and tolerate wine conditions following a pre-acidic stress.  相似文献   

18.
Due to the recent changes in yeast taxonomy, a novel wine-related species Candida zemplinina as well as a “reinstated” species Saccharomyces uvarum have been accepted in addition to Candida stellata, Saccharomyces bayanus and Saccharomyces cerevisiae, and the use of the different taxon names has been inconsistent in the literature of food microbiology. The aim of this work is to make an exact comparison of genetically identified strains of these species, under oenological conditions. Dynamics and some important products of alcoholic fermentation were investigated in laboratory fermentations. The results show that C. zemplinina and C. stellata are similar in their strong fructophilic character. C. stellata produces more glycerol and fare more ethanol, which is comparable with that produced by S. uvarum. Strains of the latter species differed from S. cerevisiae mainly in low acetic acid production and lower ethanol yield. Revision of the oenological traits of these yeasts provides new data for consideration in the control of fermentation, with special regard to botrytized sweet wines, where they are frequently found in mixed population.  相似文献   

19.
Heterocyclic aromatic amines (HAAs) are sometimes formed in meats and fish cooked at high temperatures. In the present study, the effects of cooking methods by deep-fat frying, pan-frying, grilling and barbecuing on the formation of HAAs of fillets of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario) were investigated. Barbecued brown trout (1 g) was estimated to contain 0.12 ng of IQ (2-amino-3-methylimidazo[4,5-f]quinoline), 0.02 ng 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline). Grilled rainbow trout (1 g) was estimated to contain 0.02 ng 4,8-DiMeIQx. MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline), MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) were not detectable in all cooked fish.  相似文献   

20.
In the last years there is an increasing demand to produce wines with higher glycerol levels and lower ethanol contents. The production of these compounds by yeasts is influenced by many environmental variables, and could be controlled by the choice of optimized cultivation conditions. The present work studies, in a wine model system, the effects of temperature, pH and sugar concentration on the glycerol and ethanol syntheses by yeasts Saccharomyces cerevisiae T73, the type strain of Saccharomyces kudriavzevii IFO 1802T, and an interspecific hybrid between both species (W27), which was accomplished by the application of response surface methodology based in a central composite circumscribed design. Results show that carbon flux could be especially directed towards glycerol synthesis instead of ethanol at low pH, high sugar concentrations and low temperatures. In general, the non-wine yeast S. kudriavzevii produced higher glycerol levels and lower ethanol content than wine strains S. cerevisiae T73 and the hybrid W27, with specific and different glycerol production profiles as a function of temperature and pH. These results were congruent with the higher glycerol-3-phosphate dehydrogenase activities estimated for this species, chiefly at low temperatures (14 °C), which could explain why S. kudriavzevii is a cryotolerant yeast compared to S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号