首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

2.
Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2 × 5 cm) were individually suspended into each of three substrates inoculated (6 log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168 h) statically at 4 or 15 °C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9 log CFU/cm2) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p < 0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15 °C (168 h) by 2.2 to 5.4 log CFU/cm2 and 1.0 to 2.8 log CFU/ml or g, respectively. At 4 °C (168 h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5 log CFU/cm2) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0 and 1.7 to 2.0 log CFU/cm2, respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15 °C), but also during cold storage (4 °C) temperatures, thus, rendering the design of more effective sanitation programs necessary.  相似文献   

3.
The effects of plant compounds on Escherichia coli O157:H7 and two major heat-induced heterocyclic amines (HCAs) MeIQx and PhIP in grilled ground beef patties were determined. Ground beef with added apple and olive extracts, onion powder, and clove bud oil was inoculated with E. coli O157:H7 (107 CFU/g) and cooked to reach 45 °C at the geometric center, flipped and then cooked for another 5 min. Cooled samples were taken for microbiological and HCA analyses. Olive extract at 3% reduced E. coli O157:H7 to below detection. Reductions of up to 1 log were achieved with apple extract. Olive and apple extracts reduced MeIQx by up to 49.1 and 50.9% and PhIP by up to 50.6 and 65.2%, respectively. Onion powder reduced MeIQx and PhIP by 47 and 80.7%, respectively. Inactivation of E. coli O157:H7 and suppression of HCAs in grilled meat were achieved by optimized amounts of selected plant compounds.  相似文献   

4.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

5.
The effect of cabbage (Brassica oleracea) rhizosphere on survival of Escherichia coli O157:H7 and Salmonella Typhimurium in manure-amended soils under tropical field conditions was investigated in the Central Agro-Ecological Zone of Uganda. Three-week old cabbage seedlings were transplanted and cultivated for 120 days on manure-amended soil inoculated with 4 or 7 log CFU/g non-virulent E. coli O157:H7 and S. Typhimurium. Cabbage rhizosphere did not affect survival of the 4 log CFU/g inocula in manure-amended soil and the two enteric bacteria were not detected on/in cabbage leaves at harvest. The 7 log CFU/g E. coli O157:H7 and S. Typhimurium survived in bulk soil for a maximum of 80 and 96 days, respectively, but the organisms remained culturable in cabbage rhizosphere up to the time of harvest. At 7 log CFU/g inoculum, E. coli O157:H7 and S. Typhimurium contamination on cabbage leaves occurred throughout the cultivation period. Leaf surface sterilisation with 1% AgNO3 indicated that the organisms were present superficially and in protected locations on the leaves. These results demonstrate that under tropical field conditions, cabbage rhizosphere enhances the persistence of E. coli O157:H7 and S. Typhimurium in manure-amended soil at high inoculum density and is associated with long-term contamination of the leaves.  相似文献   

6.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

7.
Numerous Escherichia coli O157:H7 outbreaks have been linked to consumption of fresh lettuce. The development of effective and easily implemented wash treatment could reduce such incidents. The purpose of this study was to evaluate the addition of food-grade detergents to sanitizer solutions for inactivation of E. coli O157:H7 on Romaine lettuce. Freshly-cut leaves of Romaine lettuce were dip-inoculated to achieve a final cell concentration of 7.8 ± 0.2 log CFU/g, air-dried for 2 h, and stored overnight at 4 °C. Leaves were then washed for 2 min in an experimental short chain fatty acid formulation (SCFA) or in one of the following solutions with or without 0.2% dodecylbenzenesulfonic acid or 0.2% sodium 2-ethyl hexyl sulfate: 1) deionized water; 2) 100 ppm chlorine dioxide; 3) 100 ppm chlorine; and 4) 200 ppm chlorine. Following wash treatment, samples were blended in neutralizing buffer (1:3) and surface plated on the selective media CT-SMAC. The efficacy of wash treatments, with or without the detergents, in inactivating E. coli O157:H7 cells on lettuce leaves were not significantly different. The most effective wash solution was SCFA, which was capable of reducing E. coli O157:H7 populations by more than 5 log CFU/g. The rest of the wash treatments resulted in a population reduction of less than 1 log CFU/g. The effectiveness of SCFA surpasses that of other sanitizer treatments tested in this study and requires further research to optimize treatments to preserve lettuce quality. Conventional detergents did not enhance the efficacy of any of the wash treatments tested during this study.  相似文献   

8.
Compounds generated by the enzymatic hydrolysis of glucosinolates naturally present in mustard powder are potently bactericidal against Escherichia coli O157:H7. Because E. coli O157:H7 can survive the dry fermented sausage manufacturing process, 2, 4, and 6% (wt/wt) nondeheated (hot) mustard powder or 6% (wt/wt) deheated (cold) mustard powder were added to dry sausage batter inoculated with E. coli O157:H7 at about 7 log CFU/g to evaluate the antimicrobial effectiveness of the powders. Reductions in E. coli O157:H7 populations, changes in pH and water activity (aw), effects on starter culture (Pediococcus pentosaceus and Staphylococcus carnosus) populations, and effects of mustard powder on sausage texture (shear) were monitored during ripening. Nondeheated mustard powder at 2, 4, and 6% in dry sausage (0.90 aw) resulted in significant reductions in E. coli O157:H7 (P < 0.05) of 3.4, 4.4, and 6.9 log CFU/g, respectively, within 30 days of drying. During fermentation and drying, mustard powder did not affect P. pentosaceus and S. carnosus activity in any of the treatments. Extension of drying to 36 and 48 days reduced E. coli O157:H7 by >5 log CFU/g in the 4 and 2% mustard powder treatments, respectively. The 6% deheated mustard powder treatment provided the most rapid reductions of E. coli O157:H7 (yielding <0.20 log CFU/g after 24 days) by an unknown mechanism and was the least detrimental (P < 0.05) to sausage texture.  相似文献   

9.
Aerosolization was investigated as a potential way to apply allyl isothiocyanate (AIT), hydrogen peroxide (H2O2), acetic acid (AA) and lactic acid (LA) on fresh baby spinach to control Escherichia coli O157:H7 during refrigeration storage. In this study, baby spinach leaves were dip-inoculated with E. coli O157:H7 to a level of 6 log CFU/g and stored at 4 °C for 24 h before treatment. Antimicrobials were atomized into fog-like micro-particles by an ultrasonic nebulizer and routed into a jar and a scale-up model system where samples were treated. Samples were stored at 4 °C for up to 10 days before the survival of the cells was determined. A 2-min treatment with 5% AIT resulted in a > 5-log reduction of E. coli O157:H7 on spinach after 2 days refrigeration regardless if the samples were pre-washed or not; however, this treatment impaired the sensory quality of leaves. Addition of LA to AIT improved the antimicrobial efficacy of AIT. In the jar system, washing with 3% H2O2 followed by a 2-min treatment of 2.5% LA + 1% AIT or 2.5% LA + 2% AIT reduced E. coli O157:H7 population by 4.7 and > 5 log CFU/g, respectively, after 10 days refrigeration. In the scale-up system, up to 4-log reduction of bacterial population was achieved for the same treatments without causing noticeable adverse effect on the appearance of leaves. Thus, this study demonstrates the potential of aerosolized AIT + LA as a new post-washing intervention strategy to control E. coli O157:H7 on baby spinach during refrigeration storage.  相似文献   

10.
In the present study, inhibitory effects of the hydrosols of thyme, black cumin, sage, rosemary and bay leaf were investigated against Salmonella Typhimurium and Escherichia coli O157:H7 inoculated to apple and carrots (at the ratio of 5.81 and 5.81 log cfu/g for S. Typhimurium, and 5.90 and 5.70 log cfu/g for E. coli O157:H7 on to apple and carrot, respectively). After the inoculation of S. Typhimurium or E. coli O157:H7, shredded apple and carrot samples were washed with the hydrosols and sterile tap water (as control) for 0, 20, 40 and 60 min. While the sterile tap water was ineffective in reducing (P > 0.05) S. Typhimurium and E. coli O157:H7, 20 min hydrosol treatment caused a significant (P < 0.05) reduction compared to the control group. On the other hand, thyme and rosemary hydrosol treatments for 20 min produced a reduction of 1.42 and 1.33 log cfu/g respectively in the E. coli O157:H7 population on apples. Additional reductions were not always observed with increasing treatment time. Moreover, thyme hydrosol showed the highest antibacterial effect on both S. Typhimurium and E. coli O157:H7 counts. Inhibitory effect of thyme hydrosol on S. Typhimurium was higher than that for E. coli O157:H7. Bay leaf hydrosol treatments for 60 min reduced significantly (P < 0.05) E. coli O157:H7 population on apple and carrot samples. In conclusion, it was shown that plant hydrosols, especially thyme hydrosol, could be used as a convenient sanitizing agent during the washing of fresh-cut fruits and vegetables.  相似文献   

11.
The objective of the present study was to obtain data about cooking time and temperature of kiymali pide in the restaurants and to investigate thermal inactivation of E. coli O157:H7 during experimental kiymali pide making. A field study was conducted in randomly selected 23 of 87 pide restaurants. Processing parameters including oven temperature, cooking period and post-cooking temperature were determined. Kiymali pide samples were prepared using ground beef filling experimentally inoculated with E. coli O157:H7 (7.6 log10 CFU/g). Pide samples were cooked at a conventional oven at 180 °C for 180, 240, 270, 300 and 330 s. Results of the current study suggest that cooking kiymali pide at 180 °C for at least 330 s (5.5 min) may provide sufficient food safety assurance (≥ 6 log10 CFU/g) for E. coli O157:H7.  相似文献   

12.
Surface contamination and internalisation of Escherichia coli O157:H7 and Salmonella Typhimurium in cabbage leaf tissues at harvest (120 days post-transplantation) following amendment of contaminated bovine manure to soil at different times during crop cultivation were investigated under tropical field conditions in the Central Agro-Ecological Zone of Uganda. Fresh bovine manure inoculated with rifampicin-resistant derivatives of non-virulent strains of E. coli O157:H7 and S. Typhimurium was incorporated into the soil to achieve inoculum concentrations of 4 and 7 log CFU/g at the point of transplantation, 56 or 105 days post-transplantation of cabbage seedlings. Frequent sampling of the soil enabled the accurate identification of the survival kinetics in soil, which could be described by the Double Weibull model in all but one of the cases. The persistence of 4 log CFU/g E. coli O157:H7 and S. Typhimurium in the soil was limited, i.e. only inocula applied 105 days post-transplantation were still present at harvest. Moreover, no internalisation in cabbage leaf tissues was observed. In contrast, at the 7 log CFU/g inoculum level, E. coli O157:H7 and S. Typhimurium survived in the soil throughout the cultivation period. All plants (18/18) examined for leaf contamination were positive for E. coli O157:H7 at harvest irrespective of the time of manure application. A similar incidence of leaf contamination was found for S. Typhimurium. On the other hand, only plants (18/18) cultivated on soil amended with contaminated manure at the point of transplantation showed internalised E. coli O157:H7 and S. Typhimurium at harvest. These results demonstrate that under tropical field conditions, the risk of surface contamination and internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest depend on the inoculum concentration and the time of manure application. Moreover, the internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest seems to be limited to the worst case situation, i.e., when highly contaminated manure is introduced into the soil at the time of transplantation of cabbage seedlings.  相似文献   

13.
This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤ 1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤ 4.5 and ≤ 3.9 log CFU/g. Log reductions of ≤ 4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli.  相似文献   

14.
Rico R. Suhalim  Jinru Chen 《LWT》2007,40(7):1266-1270
Channel catfish skin with or without mucus (0.5 cm in diameter) were immersed into a suspension containing 109 CFU/ml of Escherichia coli O157:H7 E318 cells at 22 °C for 20 min. The inhibitory effect of skin mucus was determined by placing the mucus-side down on tryptic soy agar inoculated with 104-105 CFU of E. coli O157:H7 E318. The inhibition zones of fish mucus had a diameter of approximately 0.7 cm and were only visible for the first 12 h of the incubation. Bacterial cells were observed at 15 μm into the mucus layer under confocal scanning laser microscopy (CSLM). Plate counts and CSLM revealed 0.5- and 1-log less cells, respectively, attached to skin without mucus than to skin with mucus. Results suggest that E. coli O157:H7 E318 could attach to and penetrate through the mucus of channel catfish and may become a source of contamination during catfish processing.  相似文献   

15.
The objective of this research was to determine the effectiveness of caffeine on inactivation of Escherichia coli O157:H7 in brain heart infusion (BHI) broth. Overnight samples of five E. coli O157:H7 strains of (E0019, F4546, H1730, 944 and Cider) were used in this study. These strains were individually inoculated at an initial inoculum level of 2 log CFU/ml into BHI broth containing caffeine at different concentrations (0.00%, 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.50%, 1.75%, and 2.00%). Samples were then incubated at 37 °C for 24 h. Bacterial growth was monitored at different time intervals by measuring turbidity at 610 nm using a spectrophotometer. Results revealed that the addition of caffeine inhibited the growth of E. coli O157:H7. Significant growth inhibition was observed with concentration levels of 0.50% and higher. These results indicate that caffeine has potential as an antimicrobial agent for the treatment of E. coli O157:H7 infection and should be investigated further as a food additive to increase biosafety of consumable food products.  相似文献   

16.
Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut produce company. Zataria EO emulsions of 3%, 5% and 10% reduced Escherichia coli O157:H7 by 1.7, 2.2 and 3.5 log cfu/g in baby-leaf salads after 5 days of storage at 7 °C. By contrast, reductions in E. coli O157:H7 counts remained the same when clove was applied at concentrations of 5% and 10% (2.5 log cfu/g reduction). Oregano (10%) reduced inoculated E. coli O157:H7 counts in baby-leaf salads by a maximum of 0.5 log cfu/g after 5 days of storage. Zataria showed strong antimicrobial efficacy against E. coli O157:H7 and also against the endogenous microbiota of baby-leaf salads stored for 9 days. Feline calicivirus (FCV), a norovirus surrogate, survived on inoculated baby-leaf salads during refrigerated storage (9 days at 7 °C) regardless of treatment. Refrigeration temperatures completely annulled the effectiveness of the EOs against FCV inoculated in baby-leaf salads as occurred in FCV cultures. This study shows that EOs, and zataria in particular, have great potential use as an additional barrier to reduce contamination-related risks in baby-leaf salads. However, further research should be done into foodborne viruses in order to improve food safety.  相似文献   

17.
Multistate outbreaks of Escherichia coli O157:H7 infections through consumption of contaminated foods including produce products have brought a great safety concern. The objectives of this study were to determine the effect of biofilm and quorum sensing production on the attachment of E. coli O157:H7 on food contact surfaces and to evaluate the transfer of the pathogen from the food contact to various food products. E. coli O157:H7 produced maximum levels of AI-2 signals in 12 h of incubation in tested meat, poultry, and produce broths and subsequently formed strong biofilm in 24 h of incubation. In general, E. coli O157:H7 formed stronger biofilm on stainless steel than glass. Furthermore, E. coli O157:H7 that had attached on the surface of stainless steel was able to transfer to meat, poultry, ready-to-eat deli, and produce products. Strong attachment of the transferred pathogen on produce products (cantaloupe, lettuce, carrot, and spinach) was detected (>103 CFU/cm2) even after washing these products with water. Our findings suggest that biofilm formation by E. coli O157:H7 on food contact surfaces can be a concern for efficient control of the pathogen particularly in produce products that require no heating or cooking prior to consumption.  相似文献   

18.
M.I. Bazhal  G.S.V. Raghavan 《LWT》2006,39(4):420-426
Inactivation of Escherichia coli O157:H7 in liquid whole egg using thermal and pulsed electric field (PEF) batch treatments, alone and in combination with each other, was investigated. Electric field intensities in the range from 9 to 15 kV/cm were used in the study. The threshold temperature for thermal inactivation alone was 50 °C. PEF enhanced the inactivation of E. coli O157:H7 when the sample temperature was higher than the thermal threshold temperature. The maximum inactivation of E. coli O157:H7 obtained using thermal treatment alone was ∼2 logs at 60 °C. However, combined heat and PEF treatments resulted in up to 4 log reduction of the pathogen. The kinetic rate constants kTE for combined treatments at 55 °C varied from 0.025 to 0.119 pulse−1 whereas the rate constants at 60 °C ranged from 0.034 to 0.228 pulse−1. These results indicated a synergy between temperature and electric field on the inactivation of E. coli O157:H7 within a given temperature range.  相似文献   

19.
Dry cured (uncooked) hams with low water activity and pH ≥5.6 seem a likely food vehicle for Escherichia coli O157:H7. In previous work, isothiocyanates produced from mustard glucosinolates by bacterial myrosinase-like activity converted deodorized mustard into a potent antimicrobial in dry sausage. In this study its value in controlling E. coli O157:H7 survival in Westphalian ham was investigated. Hams were inoculated with a 7.5 log cfu g(-1) cocktail of E. coli O157:H7, 4% or 6% (w/w) deodorized yellow mustard powder was surface applied and monitored 80 d for pathogen survival. In one trial to accelerate formation of isothiocyanate, a Staphylococcus (S.) carnosus meat starter culture was added to hams at 45 d (after salt equilibration). At 21 d, E. coli O157:H7 was reduced by 3 log cfu g(-1) on hams treated with mustard powder compared to only a 1 log cfu g(-1) reduction in the control. By 45 d, mustard powder caused a reduction of >5 log cfu g(-1)E. coli O157:H7, whereas it took 80 d for numbers in control hams to be similarly reduced. Although the commercial process used caused a 5 log cfu g(-1) reduction of E. coli O157:H7 in 80 d, 4% or 6% deodorized mustard accelerated this reduction and the S. carnosus starter culture may have contributed to the maintenance of this effect.  相似文献   

20.
Lee JL  Levin RE 《Food microbiology》2011,28(3):562-567
A sample treatment method which separates Escherichia coli O157:H7 from lettuce and removes PCR inhibitors allowing 5 CFU/g of target cells to be detected using real-time PCR is described. Lettuce leaves inoculated with E. coli O157:H7 were rinsed with 0.025% sodium dodecyl sulfate (SDS). In this study, there were two major factors that strongly affected the recovery of E. coli O157:H7 during sample preparation, the amount of bentonite coated activated charcoal used to remove PCR inhibitors and the agitated contact time of the samples with the coated charcoal. When 3.0 g of activated carbon coated with bentonite were mixed with target cell suspensions (30 ml) derived from 50 g of lettuce, a high recovery of E. coli O157:H7 (93%) was obtained. Sample agitation with bentonite coated activated charcoal for 15 min resulted in 95% recovery of E. coli O157:H7. When a commercial DNA purification resin was used for detection of E. coli O157:H7 without the use of the bentonite treated charcoal, the real-time PCR (Rti-PCR) failed to detect 1 × 102 CFU/g. In contrast, with the use of use of bentonite coated activated charcoal and a commercial DNA purifying resin together, Rti-PCR was able to detect 5 CFU of E. coli O157:H7/g of lettuce which was equivalent to 2.8 CFU/Rti-PCR. Such a successful detection level was the result of the bentonite coated activated charcoal’s ability to absorb the PCR inhibitors released from seeded lettuce during detachment. A standard curve was generated by plotting the Ct values against the log of CFU of target bacterial cells. A linear range of DNA amplification was exhibited from 5.0 × 100 to 1.0 × 104 CFU/g by using Rti-PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号