首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lactobacillus casei Zhang is a probiotic strain originally isolated from koumiss. Previously, we showed that an alkaline shock protein (encoded by asp23) was involved in the adaptation of L. casei Zhang to gentamycin. In the present study, we compared the proteomes of the asp23 mutant and its parent strain grown in the presence of gentamycin. The results showed that 22 and 21 proteins were significantly up- and downregulated, respectively (>1.5-fold difference). By parallel reaction monitoring analysis, we further validated that specific membrane-associated proteins were important in regulating the antibiotics-induced cell wall stress. The findings provide insight into the physiological role of the asp23 gene in the growth response of L. casei when exposed to antibiotic stress.  相似文献   

3.
Lactobacillus casei Zhang is a novel strain that was screened out of koumiss collected in Inner Mongolia, and our previous research showed that L. casei Zhang has health benefits such as cholesterol-reducing and immunomodulating effects. The fermentation characteristics of L. casei Zhang in soymilk and bovine milk and the transit tolerance of L. casei Zhang in fermented milk products during refrigerated storage for 28 d were assessed. A faster decrease in pH and faster growth of L. casei Zhang during fermentation were observed in soymilk compared with bovine milk at various inoculation rates, probably because of the low pH buffering capacity of soymilk. The fermented bovine milk samples had much higher final titratable acidity (TA) values (between 0.80 and 0.93%) than the soymilk samples (between 0.40 and 0.46%). Dramatic increases in TA values in the fermented soymilk samples during storage were observed, and the TA values of the fermented soymilk samples changed from <0.56% to values between 0.86 and 0.98%. On the other hand, only slight increases in TA were observed in the bovine milk samples during the 28 d of storage. The survival rates of freshly prepared cultures of L. casei Zhang in simulated gastric juice at pH 2.0 and 2.5 were 31 and 69%, respectively, and the delivery of L. casei Zhang through fermented soymilk and bovine milk significantly improved the viability of L. casei Zhang in simulated gastric transit. Lactobacillus casei Zhang showed good tolerance to simulated gastric juice and intestinal juice in the fermented soymilk and bovine milk samples, and maintained high viability (>108 cfu/g) during storage at 4°C for 28 d. Our results indicated that both soymilk and bovine milk could serve as vehicles for delivery of probiotic L. casei Zhang, and further research is needed to elucidate the mechanism of the change in pH and TA of L. casei Zhang in fermented milk samples during fermentation and storage and to understand the difference between soy- and milk-based systems.  相似文献   

4.
Production of functional probiotic, prebiotic, and synbiotic ice creams   总被引:1,自引:0,他引:1  
In this work, 3 types of ice cream were produced: a probiotic ice cream produced by adding potentially probiotic microorganisms such as Lactobacillus casei and Lactobacillus rhamnosus; a prebiotic ice cream produced by adding inulin, a prebiotic substrate; and a synbiotic ice cream produced by adding probiotic microorganisms and inulin in combination. In addition to microbial counts, pH, acidity, and physical and functional properties of the ice creams were evaluated. The experimental ice creams preserved the probiotic bacteria and had counts of viable lactic acid bacteria after frozen storage that met the minimum required to achieve probiotic effects. Moreover, most of the ice creams showed good nutritional and sensory properties, with the best results obtained with Lb. casei and 2.5% inulin.  相似文献   

5.
6.
Lactobacillus casei Zhang是1株筛选自发酵酸马奶,并具有耐酸等益生特性的益生乳杆菌。该研究利用蛋白质组双向电泳,比较了其在pH值为7.0和5.5的培养液中分别生长至对数生长期中期的蛋白质组表达差异。结果表明,有11个蛋白质点表达发生明显变化,经过基质辅助激光解吸/电离飞行时间质谱鉴定,其中有3个表达增强的蛋白质点分别鉴定为翻译因子(EF-Tu),N-乙酰氨基葡萄糖-6-磷酸脱醛酶(NagA)和小热休克蛋白(sHsp)。酸胁迫可诱导乳酸菌产生复杂的酸应激反应,涉及不同的代谢调控途径。  相似文献   

7.
The survival of probiotic microorganisms including Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus and Bifidobacterium spp. was evaluated in yoghurt and freeze-dried yoghurt after processing and storage. The effectiveness of microencapsulating probiotic organisms as well as adding cryoprotectants and prebiotics in improving their viability was also investigated. The viability of Bifidobacterium infantis 17930 and L. rhamnosus GG was reduced by 0.07 log, while that of L. casei 1520 and Bifidobacterium longum 1941 was reduced by 0.28 and 0.39 log, respectively. There was a 7% improvement in the viability of L. casei 1520 when cryoprotectant ‘Unipectine™ RS 150’ was added at 2.5% (w/v). The prebiotic ‘Raftilose®P95’ when added at 1.5% w/v to yoghurt improved the viability of the combined selected probiotic organisms by 1.42 log during four weeks of storage at 4 °C. Microencapsulation with alginate improved viability of combined selected probiotic organisms by 0.31 log in freeze-dried yoghurt stored at 21 °C.  相似文献   

8.
Excessive intake of NaCl has been associated with the increased risk of several diseases, particularly hypertension. Strategies to reduce sodium intake include substitution of NaCl with other salts, such as KCl. In this study, the effects of NaCl reduction and its substitution with KCl on cell membranes of a cheese starter bacterium (Lactococcus lactis ssp. lactis), probiotic bacteria (Bifidobacterium longum, Lactobacillus acidophilus, and Lactobacillus casei), and a pathogenic bacterium (Escherichia coli) were investigated using Fourier-transform infrared (FTIR) spectroscopy. A critical NaCl concentration that inhibited the viability of E. coli without affecting the viability of probiotic bacteria significantly was determined. To find the critical NaCl concentration, de Man, Rogosa, and Sharpe (MRS) broth was supplemented with a range of NaCl concentrations [0 (control), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0%], and the effect on cell viability and FTIR spectra was monitored for all bacteria. A NaCl concentration of 2.5% was found to be the critical level of NaCl to inhibit E. coli without significantly affecting the viability of most of the probiotic bacteria and the cheese starter bacterium. The FTIR spectral analysis also highlighted the changes that occurred mainly in the amide regions upon increasing the NaCl concentration from 2.5 to 3.0% in most of the bacteria. Escherichia coli and B. longum were more sensitive to substitution of NaCl with KCl, compared with Lb. acidophilus, Lb. casei, and Lc. lactis ssp. lactis. To evaluate the effect of substitution of NaCl with KCl, substitution was carried out at the critical total salt concentration (2.5%, wt/vol) at varying concentrations (0, 25, 50, 75, and 100% KCl). The findings suggest that 50% substitution of NaCl with KCl, at 2.5% total salt, could inhibit E. coli without affecting the probiotic bacteria.  相似文献   

9.
Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6°C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists.  相似文献   

10.
Interest has been growing in the co-fermentation of starter cultures with probiotic bacteria in milk. However, the representative metabolites and metabolic changes at different key time points during milk fermentation and storage in starter cultures and probiotic bacteria are still unclear. In this study, we used gas chromatography/mass spectrometry–based metabolomics to identify volatile metabolites and discriminate between 6 different time points [fermentation initiation (FI), fermentation curd (FC), fermentation termination (FT), storage 1 d (S1d), storage 7 d (S7d), and storage 14 d (S14d)] during the fermentation and storage of starter cultures and Lactobacillus casei Zhang milk. Of the 52 volatile metabolites identified, 15 contributed to discrimination of the 6 time points. Then, using the profile from the different time points, we analyzed pairwise comparisons (FI vs. FC; FC vs. FT; FT vs. S1d; S1d vs. S7d; S7d vs. S14d); these time-lapse comparisons showed metabolic progressions from one fermentation stage to the next. We found representative and exclusive metabolites at specific fermentation and storage time points. The greatest difference in metabolites occurred between FC and FT, and the metabolic profiles between S7d and S14d were most similar. Interestingly, decanoic acid, octanoic acid, and hexanoic acid reached their highest level at storage 14 d, indicating that the post-fermentation storage of fermented milk with L. casei Zhang may add more probiotic functions. This work provides detailed insight into the time-specific profiles of volatile metabolites and their dynamic changes; these data may be used for understanding and eventually predicting metabolic changes in milk fermentation and storage, where probiotic strains may be used.  相似文献   

11.
Since 2004, our research group has isolated 240 Lactobacillus strains from Koumiss, a traditional fermented alcoholic beverage prepared from mare's milk in Inner Mongolia, Xinjiang of China and Mongolia. Among these Lactobacillus strains a novel strain with potential probiotic properties, Lactobacillus casei Zhang, was screened out and studied extensively for its probiotic properties, health-promoting effects and fermentation characteristics. In vitro tests indicated that L. casei Zhang had high tolerance to simulated gastric, intestine juices and bile salts, similar to commercial probiotic strains such as Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus GG, L. casei Shirota and Bifidobacterium animalis Bb12. Higher acid-production activity and proteolytic activity was observed in the fermented milk inoculated with L. casei Zhang during the refrigerated storage than in the samples inoculated with the selected commercial probiotics. The yogurt samples fermented with L. casei Zhang exhibited similarer viable count (1.0 × 109 cfu/mL) as the other samples after 28 d of refrigerated storage. The results suggested that L. casei Zhang showed good potential for application in functional foods and health-related products.  相似文献   

12.
《Journal of dairy science》2022,105(6):4857-4867
Probiotic fermented milk is more and more popular due to their positive health associated properties. However, fermentation temperature and other process conditions may affect the growth and metabolism of probiotic strains, thereby affecting quality of the final products. In this study, the growth behaviors and metabolomic profiles of yogurts induced by Lactobacillus casei Zhang at fermentation termination (FT) and d 10 of storage (S10d) under different fermentation temperatures at 37°C (low) and 42°C (high) were analyzed and compared using liquid chromatography-mass spectrometry (MS)- and gas chromatography-MS-based metabolomics approaches. At 37°C, the growth of L. casei Zhang at FT and S10d was significantly increased, and the potential relationship between riboflavin, starch, and sucrose metabolism and growth of L. casei Zhang may be mutually promoting. Fermentation temperature (37°C and 42°C) affected volatile and nonvolatile metabolomic profiles and pathways. The levels of acetaldehyde, 2,3-butanedione, acetoin, butyric acid, decanoic acid, hexanoic acid, and octanoic acid were significantly higher at 37°C than at 42°C at FT and S10d. This indicates that the low temperature (37°C) most likely contributes more to the formation of important flavor compounds during the fermentation process and production of short-chain fatty acids during storage.  相似文献   

13.
Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥ 106 viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45 °C for 72 h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37 °C for 72 h.  相似文献   

14.
The aim of the present study was to characterize lactic acid bacteria (LAB) strains isolated from traditional fermented gilaburu fruit juice and their probiotic potential. The LAB counts of the fermented gilaburu fruit juice were in the range of 3.92–8.30 log cfu/g. Total of 332 isolates belonging to Lactobacillus and Leuconostoc species were characterized from traditional fermented gilaburu juice by genotypic methods. It was also determined that the major LAB strains belong to Lactobacillus plantarum (173 isolates), Lactobacillus casei (52 isolates) and Lactobacillus brevis (24 isolates), while Lactobacillus buchneri, Lactobacillus parabuchneri, Lactobacillus pantheris, Leuconostoc pseudomesenteroides and Lactobacillus harbinensis were the least in isolated LAB strains. In terms of the probiotic potentials, Lb. plantarum strains were able to grow at pH 2.5, but 3 of Lb. casei strains, one of each Lb. brevis and Lb. buchneri strains could not grow at the same pH. All selected LAB stains were resistant to bile salt at ≤ 0.3% concentration. While all the LAB species grew at 15 °C, two Lactobacillus hordei strains could also grow at 45 °C. The highest cell hydrophobicity degrees were for Lb. casei (G20a) and Lb. plantarum (G19e) as 87.5 and 86.0%, respectively. Listeria monocytogenes and Bacillus cereus were the most sensitive bacteria against the selected LAB strains, while Escherichia coli and Staphylococcus aureus were the most resistant. Again all the isolated LAB species were resistant to three antibiotics; kanamycin, streptomycin and vancomycin. Characterization and probiotic potentials of the LAB isolated from fermented gilaburu (Viburnum opulus) juice were studied first time, and further research needs to be done on their behaviors in similar food formulations as a probiotic.  相似文献   

15.
This study optimized the conditions of Lactobacillus casei NRRL B-442 cultivation in cashew apple juice, as well as, determined the proper inoculum amount and fermentation time. Moreover, it was investigated the survivability ability of L. casei in cashew apple juice during refrigerated storage (4 °C) for 42 days. The optimum conditions for probiotic cashew apple juice production were initial pH 6.4, fermentation temperature of 30 °C, inoculation level of 7.48 Log CFU/mL (L. casei) and 16 h of fermentation process. It was observed that the L. casei grew during the refrigerated storage. Viable cell counts were higher than 8.00 Log CFU/mL throughout the storage period (42 days). The values of lightness, yellowness and total color change increased and the values of redness reduced along the fermentation and refrigerated storage periods. The fermented juice with L. casei is a good and healthy alternative functional food containing probiotics. Cashew apple juice showed to be as efficient as dairy products for L. casei growth.  相似文献   

16.
The growth of 24 strains of lactic acid starter bacteria (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactococcus lactis) and 24 strains of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and bifidobacteria) in liquid media containing different substances was assessed. The substances used were salts (NaCl and KCl); sugars (sucrose and lactose); sweeteners (acesulfame and aspartame); aroma compounds (diacetyl, acetaldehyde and acetoin); natural colorings for fermented milk (red, yellow and orange colorings); flavoring agents (strawberry, vanilla, peach and banana essences); flavoring–coloring agents (strawberry, vanilla and peach); nisin, natamycin and lysozyme. Bacterial growth in the presence of natural fruit juices (green apple, kiwi, pineapple, peach and strawberry) with or without neutralization and cell viability in lactic acid acidified (pH 4 and 5) milk for 4 weeks at 5°C were also studied.Some compounds (KCl, sweeteners, aroma compounds, natamycin, flavoring agents and the peach flavoring–coloring agent) did not influence the growth of the strains in the concentrations commonly used in the dairy industry. The effect of other substances (especially flavoring–coloring agents) on the growth of lactic acid starters and probiotic bacteria was strain-dependent. Natural fruit juices weakly inhibited mainly S. thermophilus strains. Cell viability during cold storage in acidified milk was satisfactory for L. delbrueckii subsp. bulgaricus and L. casei group strains. For L. acidophilus and Bifidobacterium, the decreases in cell counts at pH 5 were negligible. Nevertheless, decreases from 1.6 to 6.2 and from 0.1 to 7.6 log orders, respectively were observed at pH 4.  相似文献   

17.
The use of free and immobilized Lactobacillus casei ATCC 393 on whey protein as starter culture in probiotic Feta-type cheese production was evaluated. The probiotic cultures resulted in significantly higher acidity; lower pH; reduced counts of coliforms, enterobacteria, and staphylococci; and improved quality characteristics compared with cheese with no culture. Microbiological and strain-specific multiplex PCR analysis showed that both free and immobilized L. casei ATCC 393 were detected in the novel products at levels required for conferring a probiotic effect at the end of the ripening. The effect of starter culture on production of volatile compounds was investigated by the solid-phase microextraction gas chromatography-mass spectrometry analysis technique. The immobilized cells resulted in an improved profile of aroma-related compounds and the overall high quality of the novel products was ascertained by the preliminary sensory test. Finally, the high added value produced by exploitation of whey, which is an extremely polluting industrial waste, was highlighted and assessed.  相似文献   

18.
The increase in vegetarianism as dietary habit and the increased allergy episodes against dairy proteins fuel the demand for probiotics in nondairy products. Lactose intolerance and the cholesterol content of dairy products can also be considered two additional reasons why some consumers are looking for probiotics in other foods. We aimed at determining cell viability in nondairy drinks and resistance to simulated gastric digestion of commercial probiotic lactobacilli commonly used in dairy products. Lactobacillus casei LC‐01 and L. casei BGP 93 were added to different commercial nondairy drinks and viability and resistance to simulated gastric digestion (pH 2.5, 90 min, 37 °C) were monitored along storage (5 and 20 °C). For both strains, at least one nondairy drink was found to offer cell counts around 7 log orders until the end of the storage period. Changes in resistance to simulated gastric digestion were observed as well. Commercial probiotic cultures of L. casei can be added to commercial fruit juices after a carefull selection of the product that warrants cell viability. The resistance to simulated gastric digestion is an easy‐to‐apply in vitro tool that may contribute to product characterization and may help in the choice of the food matrix when no changes in cell viability are observed along storage. Sensorial evaluation is mandatory before marketing since the product type and storage conditions might influence the sensorial properties of the product due to the possibility of growth and lactic acid production by probiotic bacteria.  相似文献   

19.
Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥107 cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥107 cfu/mL for 35 d, of L. casei for 7 d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This study presents relevant information on physicochemical, sensory, and microbial properties of probiotic yogurts and fermented milks, which could guide the dairy industry in developing new probiotic products.  相似文献   

20.
This study was conducted to evaluate probiotic potato juice as a potential substrate for the production of Lactobacillus casei, and the change in the functionality of potato juice was monitored during fermentation. L. casei grew well in potato juice without nutrient supplementation, and lactic acid bacteria of fermented ‘Haryoung’ juice reached 1.7×109 CFU/mL after a 48 h fermentation. DPPH radical scavenging activities of the potato juices decreased after a 72 h fermentation, but fermented colored potato juice still maintained >50% radical scavenging activity. The survival rate of L. casei fermented in’ Haryoung’ juice was 89.0% after exposure to an acidic condition, and L. casei in all fermented potato juice samples showed the ability (50–85%) to survive in the presence of bile. These results suggest that fermented potato juice might serve as a probiotic functional beverage for vegetarians or consumers who are allergic to dairy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号