首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Listeria monocytogenes CCUG 15526 was inoculated at a concentration of approximately 7.0 log10 cfu/mL in milk samples with 0.3, 3.6, 10, and 15% fat contents. Milk samples with 0.3 and 3.6% fat content were also inoculated with a lower load of approximately 3.0 log10 cfu/mL. Inoculated milk samples were subjected to a single cycle of ultra-high-pressure homogenization (UHPH) treatment at 200, 300, and 400 MPa. Microbiological analyses were performed 2 h after the UHPH treatments and after 5, 8, and 15 d of storage at 4°C. Maximum lethality values were observed in samples treated at 400 MPa with 15 and 10% fat (7.95 and 7.46 log10 cfu/mL), respectively. However, in skimmed and 3.6% fat milk samples, complete inactivation was not achieved and, during the subsequent 15 d of storage at 4°C, L. monocytogenes was able to recover and replicate until achieving initial counts. In milk samples with 10 and 15% fat, L. monocytogenes recovered to the level of initial counts only in the milk samples treated at 200 MPa but not in the milk samples treated at 300 and 400 MPa. When the load of L. monocytogenes was approximately 3.0 log10 cfu/mL in milk samples with 0.3 and 3.6% fat, complete inactivation was not achieved and L. monocytogenes was able to recover and grow during the subsequent cold storage. Fat content increased the maximum temperature reached during UHPH treatment; this could have contributed to the lethal effect achieved, but the amount of fat of the milk had a stronger effect than the temperature on obtaining a higher death rate of L. monocytogenes.  相似文献   

3.
Listeria spp. are ubiquitously found in both the natural and the food processing environment, of which Listeria monocytogenes is of an important health risk. Here, we report on the formation of single and mixed species biofilms of L. monocytogenes/Listeria innocua and Lactobacillus plantarum strains in 24‐well polystyrene microtiter plates and on the inactivation of 24‐hr and 72‐hr biofilms using quaternary ammonium compound‐, tertiary alkyl amine‐, and chlorine‐based disinfectants. Fluorescent in situ hybridization (FISH) and LIVE/DEAD BacLight staining were applied for 72‐hr L. innocuaL. plantarum mixed biofilms in the LabTek system for the species identification and the reaction of biofilm cells to disinfectants, respectively. L. monocytogenes/L. innocua were more resistant to disinfectants in 72‐hr than in 24‐hr biofilms, whereas L. plantarum strains did not show any significant differences between 72‐hr and 24‐hr biofilms. Furthermore, L. innocua when grown with L. plantarum was more resistant to all disinfection treatments, indicating a protective effect from lactobacilli in the mixed species biofilm. The biofilm formation and reaction to disinfectants, microscopically verified using fluorescence in situ hybridization and LIVE/DEAD staining, showed that L. innocua and L. plantarum form a dense mixed biofilm and also suggested the shielding effect of L. plantarum on L. innocua in the mixed species biofilm.  相似文献   

4.
This study examined the growth characteristics of Listeria monocytogenes as affected by a native microflora in cooked ham at refrigerated and abuse temperatures. A five-strain mixture of L. monocytogenes and a native microflora, consisting of Brochothrix spp., isolated from cooked meat were inoculated alone (monocultured) or co-inoculated (co-cultured) onto cooked ham slices. The growth characteristics, lag phase duration (LPD, h), growth rate (GR, log10 cfu/h), and maximum population density (MPD, log10 cfu/g), of L. monocytogenes and the native microflora in vacuum-packed ham slices stored at 4, 6, 8, 10, and 12 °C for up to 5 weeks were determined. At 4-12 °C, the LPDs of co-cultured L. monocytogenes were not significantly different from those of monocultured L. monocytogenes in ham, indicating the LPDs of L. monocytogenes at 4-12 °C were not influenced by the presence of the native microflora. At 4-8 °C, the GRs of co-cultured L. monocytogenes (0.0114-0.0130 log10 cfu/h) were statistically but marginally lower than those of monocultured L. monocytogenes (0.0132-0.0145 log10 cfu/h), indicating the GRs of L. monocytogenes at 4-8 °C were reduced by the presence of the native microflora. The GRs of L. monocytogenes were reduced by 8-7% with the presence of the native microflora at 4-8 °C, whereas there was less influence of the native microflora on the GRs of L. monocytogenes at 10 and 12 °C. The MPDs of L. monocytogenes at 4-8 °C were also reduced by the presence of the native microflora. Data from this study provide additional information regarding the growth suppression of L. monocytogenes by the native microflora for assessing the survival and growth of L. monocytogenes in ready-to-eat meat products.  相似文献   

5.
The present research compared the effect of chlorine dioxide (CD) gas, aqueous CD and aqueous sodium hypochlorite (SHC) treatments on the inactivation of a five strain mixture of Listeria monocytogenes – containing biofilms. Four day old biofilms were developed on a stainless steel (SS 304) coupon by using a mixture of five cultures of L. monocytogenes (Scott A, N1-227, 103M, 82 and 311) using a 100% relative humidity (RH) dessicator for incubation at room temperature (22 ± 2 °C). After biofilm development, coupons were rinsed and dried for 2 h and treated with 0.3 mg/l CD gas at 75% RH, 7 mg/l of aqueous CD and 50 mg/l SHC. Initial log10 population of biofilm cells before CD gas, aqueous CD and SHC treatment was 4.80, 5.09 and 4.95 log10 CFU/cm2. The Weibull model was used to fit non-linear survivor curves. Treatments and time points of 0.3 mg/l CD gas and 7 mg/l aq. CD solution were significantly different (p < 0.05). A 10 min treatment of 0.3 mg/l CD gas, 7 mg/l of aq. CD, and 50 mg/l SHC resulted in reductions of 3.21, 3.74 and 3.09 log10 CFU/cm2, respectively. At 10 min, all treatments were not statistically different (p > 0.05). Low levels of CD (0.3 mg/l CD gas and 7 mg/l aq. CD solution) for 10 min resulted in similar log reductions compared to 50 mg/l SHC.  相似文献   

6.
The effect of high-hydrostatic-pressure processing (HPP) on the survival of a 5-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a postpackaging intervention. Queso Fresco was made using pasteurized, homogenized milk, and was starter-free and not pressed. In phase 1, QF slices (12.7 × 7.6 × 1 cm), weighing from 52 to 66 g, were surface inoculated with L. monocytogenes (ca. 5.0 log10 cfu/g) and individually double vacuum packaged. The slices were then warmed to either 20 or 40°C and HPP treated at 200, 400, and 600 MPa for hold times of 5, 10, 15, or 20 min. Treatment at 600 MPa was most effective in reducing L. monocytogenes to below the detection level of 0.91 log10 cfu/g at all hold times and temperatures. High-hydrostatic-pressure processing at 40°C, 400 MPa, and hold time ≥15 min was effective but resulted in wheying-off and textural changes. In phase 2, L. monocytogenes was inoculated either on the slices (ca. 5.0 log10 cfu/g; ON) or in the curds (ca. 7.0 log10 cfu/g; IN) before the cheese block was formed and sliced. The slices were treated at 20°C and 600 MPa at hold times of 3, 10, and 20 min, and then stored at 4 and 10°C for 60 d. For both treatments, L. monocytogenes became less resistant to pressure as hold time increased, with greater percentages of injured cells at 3 and 10 min than at 20 min, at which the lethality of the process increased. For the IN treatment, with hold times of 3 and 10 min, growth of L. monocytogenes increased the first week of storage, but was delayed for 1 wk, with a hold time of 20 min. Longer lag times in growth of L. monocytogenes during storage at 4°C were observed for the ON treatment at hold times of 10 and 20 min, indicating that the IN treatment may have provided a more protective environment with less injury to the cells than the ON treatment. Similarly, HPP treatment for 10 min followed by storage at 4°C was the best method for suppressing the growth of the endogenous microflora with bacterial counts remaining below the level of detection for 2 out of the 3 QF samples for up to 84 d. Lag times in growth were not observed during storage of QF at 10°C. Although HPP reduced L. monocytogenes immediately after processing, a second preservation technique is necessary to control growth of L. monocytogenes during cold storage. However, the results also showed that HPP would be effective for slowing the growth of microorganisms that can shorten the shelf life of QF.  相似文献   

7.
The effectiveness of electron beam irradiation and high pressure treatment for the sanitation of cold-smoked salmon from two points of view, microbial safety and shelf-life extension, was compared. From the response of L. monocytogenes INIA H66a to irradiation, a D value of 0.51 kGy was calculated. For samples stored at 5 °C, 1.5 kGy would be sufficient to attain a Food Safety Objective (FSO) of 2 log10cfu/g L. monocytogenes for a 35-day shelf-life, whereas 3 kGy would be needed in the case of a temperature abuse (5 °C + 8 °C). Pressurization at 450 MPa for 5 min was considered to be an insufficient treatment, since the FSO of 2 log10cfu/g L. monocytogenes was only attained for a shelf-life of 21 days at 5 °C. However, treatment at 450 MPa for 10 min achieved this FSO for samples held during 35 days at 5 °C, or during 21 days under temperature abuse (5 °C + 8 °C) conditions. Irradiation at 2 kGy kept the microbial population of smoked salmon below 6 log10cfu/g after 35 days at 5 °C, with negligible or very light changes in its odor. Pressurization at 450 MPa for 5 min also kept the microbial population below 6 log10cfu/g after 35 days at 5 °C and did not alter odor, but affected negatively the visual aspect of smoked salmon.  相似文献   

8.
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5°C, respectively). In cheese inoculated with 4 log10 cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log10 cfu/g in all treatments over 60 d. When inoculated with 5 log10 cfu/g at 3 mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4°C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12°C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese.  相似文献   

9.
R.A.N. Chmielewski 《LWT》2006,39(1):11-19
The purpose of this study was to develop a predictive model for the heat inactivation of Listeria monocytogenes in monoculture (strains Scott A and 3990) and with competing bacteria (Pseudomonas sp. and Pantoea agglomerans) formed on buna-N rubber with and without the presence of food-derived soil. Biofilms were produced on rubber disks in dilute Tryptic Soy broth (dTSB) with incubation for 48 h at 25 °C. Duplicate biofilm samples were heat treated for 1, 3, 5, and 15 min at 70, 72, 75, 77 and 80 °C and tested for survivors using enrichment media. The experiment was repeated six times. A predictive model was developed and plots were generated showing the percent probability of L. monocytogenes inactivation in biofilms after heat treatment. For example, to achieve a 95% probability level of complete inactivation required heat treatment of 76 °C for 6 min. The predicted model was validated using a five-strain cocktail of L. monocytogenes. The validated prediction model indicates that with proper maintenance of the time/temperature controls L. monocytogenes in biofilms on rubber surfaces will be inactivated. This model can be used as a tool in the selection of hot water sanitation processes for rubber surfaces.  相似文献   

10.
A study of the effect of pulsed electric fields (PEF) on the inactivation of Listeria monocytogenes STCC 5672 and Staphylococcus aureus STCC 4459 in McIlvaine buffer covering a range from pH 3.5 to 7.0 was conducted. Mathematical models based on the Weibull distribution were developed to describe the influence of the electric field strength, treatment time and pH of the treatment medium on the lethality of both Gram positive pathogenic bacteria after PEF treatments. Both microorganisms were more sensitive to PEF in media of low pH, although the influence of the pH on the PEF resistance was more significant in S. aureus. In the best cases scenario, the highest inactivation levels achieved were 3.3 and 6.1 log10 cycles for L. monocytogenes and S. aureus respectively in pH 3.5 after 500 μs of 35 kV/cm. Based on these results and those observed in literature, L. monocytogenes STCC 5672 at any pH investigated has been shown as one of the most PEF resistant microorganism. Therefore, this microorganism should be considered as a possible target microorganism to define process criterion for PEF pasteurization.  相似文献   

11.
The aim of this study was to verify the effectiveness of the commercially available anti-Listeria phage preparation LISTEXP100 in reducing Listeria monocytogenes on ready-to-eat (RTE) roast beef and cooked turkey in the presence or absence of the chemical antimicrobials potassium lactate (PL) and sodium diacetate (SD). Sliced RTE meat cores at 4 and 10 °C were inoculated with cold-adapted L. monocytogenes to result in a surface contamination level of 103 CFU/cm2. LISTEXTMP100 was applied at 107 PFU/cm2 and samples taken at regular time intervals during the RTE product's shelf life to enumerate viable L. monocytogenes. LISTEXP100 was effective during incubation at 4 °C with initial reductions of L. monocytogenes of 2.1 log10 CFU/cm2 and 1.7 log10 CFU/cm2, respectively, for cooked turkey and roast beef without chemical antimicrobials (there was no significant difference to the initial L. monocytogenes reductions in the presence of LISTEXTMP100 for cooked turkey containing PL and roast beef containing SD-PL). In the samples containing no chemical antimicrobials, the presence of phage resulted in lower L. monocytogenes numbers, relative to the untreated control, of about 2 log CFU/cm2 over a 28-day storage period at 4 °C. An initial L. monocytogenes cell reduction of 1.5 log10 CFU/cm2 and 1.7 log10 CFU/cm2, respectively, for cooked turkey and roast beef containing no chemical antimicrobials was achieved by the phage at 10 °C (abusive temperature). At this temperature, the L. monocytogenes cell numbers of samples treated with LISTEX™ P100 remained below those of the untreated control only during the first 14 days of the experiment for roast beef samples with and without antimicrobials. On day 28, the L. monocytogenes numbers on samples containing chemical antimicrobials and treated with LISTEXTMP100 stored at 4 and 10 °C were 4.5 log10 CFU/cm2 and 7.5 log10 CFU/cm2, respectively, for cooked turkey, and 1.2 log10 CFU/cm2 and 7.2 log10 CFU/cm2, respectively, for roast beef. In both cooked turkey samples with and without chemical antimicrobials stored at 10 °C, the phage-treated samples had significantly lower numbers of L. monocytogenes when compared to the untreated controls throughout the 28-day storage period (P < 0.0001). For roast beef and cooked turkey containing chemical antimicrobials treated with LISTEXTMP100 and stored at 4 °C, no more than a 2 log CFU/cm2 increase of L. monocytogenes was observed throughout the stated shelf life of the product. This study shows that LISTEXP100 causes an initial reduction of L. monocytogenes numbers and can serve as an additional hurdle to enhance the safety of RTE meats when used in combination with chemical antimicrobials.  相似文献   

12.
The aim of this work was to study the photocatalytic activity of titanium dioxide (TiO2) against Listeria monocytogenes bacterial biofilm. Different TiO2 nanostructured thin films were deposited on surfaces such as stainless steel and glass using the doctor-blade technique. All the surfaces were placed in test tubes containing Brain Heart (BH) broth and inoculated with L. monocytogenes. Test tubes were then incubated for 10 days at 16 °C in order to allow biofilm development. After biofilm formation, the surfaces were illuminated by ultraviolet A light (UVA; wavelength of 315-400 nm). The quantification of biofilms was performed using the bead vortexing method, followed by agar plating and/or by conductance measurements (via the metabolic activity of biofilm cells). The presence of the TiO2 nanoparticles resulted in a fastest log-reduction of bacterial biofilm compared to the control test. The biofilm of L. monocytogenes for the glass nanoparticle 1 (glass surface modified by 16% w/v TiO2) was found to have decreased by 3 log CFU/cm2 after 90 min irradiation by UVA. The use of TiO2 nanostructured photocatalysts as alternative means of disinfecting contaminated surfaces presents an intriguing case, which by further development may provide potent disinfecting solutions. Surface modification using nanostructured titania and UV irradiation is an innovative combination to enhance food safety and economizing time and money.  相似文献   

13.
《Food microbiology》2001,18(1):103-112
Several authors have reported biofilm formation by Listeria monocytogenes, and it is suspected that biofilms form a unique niche for extended survival of this foodborne pathogen in food-processing environments. We have evaluated growth of two L. monocytogenes strains (Murray and 7148) in biofilms and analysed the relationship between culturable and viable-but-non-culturable (VBNC) cells. Biofilms were grown on glass slides in static conditions at 37°C for up to 10 days. Culturable cells for L. monocytogenes Murray grew to 105cfu cm−2within 2 days, while L. monocytogenes 7148 required 4 days to reach these cell numbers. After 2 days, cell counts of L. monocytogenes Murray decreased, followed by another increase with cell numbers reaching almost 106cfu cm−2on day 10. In contrast, cell counts of L. monocytogenes 7148 stayed close to 105cfu cm−2until day 10. VBNC cells of L. monocytogenes Murray increased with biofilm age while this was not seen for strain 7148. Also, swabbing removed biofilms of strain Murray more easily than strain 7148. Comparisons of viable counts obtained for swabbed and in situ biofilms indicated that these strain differences are due either to variable composition of extracellular polymeric substances in the two biofilms or to different cell physiology of the two strains.  相似文献   

14.
Traditional aged Cheddar cheese does not support Listeria monocytogenes growth and, in fact, gradual inactivation of the organism occurs during storage due to intrinsic characteristics of Cheddar cheese, such as presence of starter cultures, salt content, and acidity. However, consuming high-salt (sodium) levels is a health concern and the dairy industry is responding by creating reduced-salt cheeses. The microbiological stability of low-salt cheese has not been well documented. This study examined the survival of L. monocytogenes in low-salt compared with regular-salt Cheddar cheese at 2 pH levels stored at 4, 10, and 21°C. Cheddar cheeses were formulated at 0.7% and 1.8% NaCl (wt/wt) with both low and high pH and aged for 10 wk, resulting in 4 treatments: 0.7% NaCl and pH 5.1 (low salt and low pH); 0.7% NaCl and pH 5.5 (low salt and high pH); 1.8% NaCl and pH 5.8 (standard salt and high pH); and 1.8% NaCl and pH 5.3 (standard salt and low pH). Each treatment was comminuted and inoculated with a 5-strain cocktail of L. monocytogenes at a target level of 3.5 log cfu/g, then divided and incubated at 4, 10, and 21°C. Survival or growth of L. monocytogenes was monitored for up to 90, 90, and 30 d, respectively. Listeria monocytogenes decreased by 0.14 to 1.48 log cfu/g in all treatments. At the end of incubation at a given temperature, no significant difference existed in L. monocytogenes survival between the low and standard salt treatments at either low or high pH. Listeria monocytogenes counts decreased gradually regardless of a continuous increase in pH (end pH of 5.3 to 6.9) of low-salt treatments at all study temperatures. This study demonstrated that post-aging inoculation of L. monocytogenes into low-salt (0.7%, wt/wt) Cheddar cheeses at an initial pH of 5.1 to 5.5 does not support growth at 4, 10, and 21°C up to 90, 90, and 30 d, respectively. As none of the treatments demonstrated more than a 1.5 log reduction in L. monocytogenes counts, the need for good sanitation practices to prevent post-manufacturing cross contamination remains.  相似文献   

15.
In this study, a microbiological challenge test in three artificially contaminated retail mixed mayonnaise-based ready-to-eat salads stored at refrigerator temperatures (3 °C and 7 °C) for 48 h was carried out. Shrimp-tomato salad, smoked ham salad and garlic cheese salad were separately contaminated by a suspension of particular Listeria monocytogenes strains. The number of L. monocytogenes, Enterobacteriaceae, staphylococci and total plate count (CFU/g) was determined. Listeria monocytogenes growth potential in the salads was calculated and evaluated.A significant increase in total plate count and L. monocytogenes count throughout storage of all three investigated salads was found. Enterobacteriaceae levels were high at the beginning in all salads but significantly (p < 0.05) decreased throughout the experiment depending on the temperature.All investigated L. monocytogenes strains demonstrated growth at both temperatures but expressed different growth potential. Especially garlic cheese salad and smoked ham salad were able to support the growth of Listeria. Shrimp-tomato salad supported growth the least. The growth potential increased with the increasing temperature and exceeded 0.5 log10 CFU/g in many cases. If the potential for growth is > 0.5 log10 CFU/g, food products can potentially endanger human health. Reference strain (ATCC 7644) showed the least growth potential almost in all cases in comparison with strains isolated from frozen pollock loins and from thermally treated specialty sausage containing preservatives. To eliminate the occurrence of microbiological risks, the shelf-life of the studied salads was estimated.  相似文献   

16.
We evaluated the influence of ultrahigh pressure homogenization (UHPH) treatment applied to milk containing Staphylococcus aureus CECT 976 before cheese making, and the benefit of applying a further high hydrostatic pressure (HHP) treatment to cheese. The evolution of Staph. aureus counts during 30 d of storage at 8°C and the formation of staphylococcal enterotoxins were also assessed. Milk containing approximately 7.3 log10 cfu/mL of Staph. aureus was pressurized using a 2-valve UHPH machine, applying 330 and 30 MPa at the primary and the secondary homogenizing valves, respectively. Milk inlet temperatures (Tin) of 6 and 20°C were assayed. Milk was used to elaborate soft-curd cheeses (UHPH cheese), some of which were additionally submitted to 10-min HHP treatments of 400 MPa at 20°C (UHPH+HHP cheese). Counts of Staph. aureus were measured on d 1 (24 h after manufacture or immediately after HHP treatment) and after 2, 15, and 30 d of ripening at 8°C. Counts of control cheeses not pressure-treated were approximately 8.5 log10 cfu/g showing no significant decreases during storage. In cheeses made from UHPH treated milk at Tin of 6°C, counts of Staph. aureus were 5.0 ± 0.3 log10 cfu/g at d 1; they decreased significantly to 2.8 ± 0.2 log10 cfu/g on d 15, and were below the detection limit (1 log10 cfu/g) after 30 d of storage. The use of an additional HHP treatment had a synergistic effect, increasing reductions up to 7.0 ± 0.3 log10 cfu/g from d 1. However, for both UHPH and UHPH+HHP cheeses in the 6°C Tin samples, viable Staph. aureus cells were still recovered. For samples of the 20°C Tin group, complete inactivation of Staph. aureus was reached after 15 d of storage for both UHPH and UHPH+HHP cheese. Staphylococcal enterotoxins were found in controls but not in UHPH or UHPH+HHP treated samples. This study shows a new approach for significantly improving cheese safety by means of using UHPH or its combination with HHP.  相似文献   

17.
A laboratory-scale UV-C treatment device based on Dean vortex technology was tested for its potential to inactivate spoilage microorganisms in cloudy fruit juices. A log 5 and log 6 reduction could be achieved by inactivating Lactobacillus plantarum BFE 5092 and Escherichia coli DH5α in naturally cloudy apple juice at 1.9 and 7.7 kJ/L, respectively. A treatment with 9.6 kJ/L led to an approximately log 4 inactivation of Saccharomyces cerevisiae DSM 70478 and Alicyclobacillus acidoterrestris DSM 2498. The effects of possible influencing parameters such as optical density, turbidity and viscosity were analyzed with regard to the efficiency of the UV-C treatment. The optical density based on dissolved compounds appeared to be the most important factor which influenced the bacterial inactivation efficiency. Cell counts of L. plantarum BFE 5092 could be reduced in quarter-strength Ringer’s solution adjusted with dye from an initial level of approximately 1 × 108-1 × 101 cfu/mL at an optical density (254 nm) of 20 at 9.6 kJ/L. Only a log 1.5 reduction, however, could be achieved at an optical density (254 nm) of 140 using the same UV-C treatment. Furthermore, no noticeable effect on inactivation could be determined by varying the turbidity or the viscosity of the juices investigated. An increasing flow rate and the consequently higher Dean number clearly improved the efficacy of the UV-C treatment. Thus, the inactivation of L. plantarum BFE 5092 in blood orange juice could be enhanced by an approximately 2.5-log reduction by increasing the Dean number from 32 to 256 at 7.7 kJ/L. The UV-C treatment using Dean vortex technology was shown in this study to effectively inactivate microorganisms even in cloudy juices. The optical density value seemed to be the exclusive determining factor on the efficiency of the UV-C inactivation of microorganisms based on Dean vortex technology, while the effect of suspended solids was negligible as a result of the efficient mixing by Dean vortices.  相似文献   

18.
Effect of pyrophosphate (PP) in combination with modified atmosphere (MAP) (80% CO2, 10% O2 and 10% N2) on the survival of Listeria monocytogenes and Escherichia coli O157 inoculated on seabass slices stored at 4 °C was investigated. PP pretreatment showed the synergistic effect on microbiological inhibition with MAP as evidenced by the lowered TVC and LAB counts, compared with samples stored in air and those kept under MAP. Microbiological changes of seabass slices inoculated with different levels of L. monocytogenes or E.coli O157 (103 and 105 cfu/g) were monitored during storage. PP pretreatment reduced colony count of E. coli O157 and extended the lag phase of L. monocytogenes. Therefore, MAP in combination with PP pretreatment not only retarded microbiological deterioration of seabass slices but also reduced or inactivated some pathogenic bacteria to some extent.  相似文献   

19.
H. Ölmez  S.D. Temur 《LWT》2010,43(6):964-970
The effects of ozone (2 mg/L), chlorine (100 mg/L) and organic acid (0.25 g/100 g citric acid plus 0.50 g/100 g ascorbic acid) treatments at 10 °C for 2 min on the removal of Escherichia coli and Listeria monocytogenes cells embedded inside biofilms on the surface of lettuce leaves were studied. None of the sanitizing treatments were found effective in removing the bacterial biofilms. Initiation of biofilms was observed after 24 h of incubation. Bacterial cells appeared as individual cells, rather than clusters after 6 h incubation, thus 99.9% reductions in both E. coli and L. monocytogenes counts were achieved with all the three treatments. However, after 48 h incubation, none of the treatments resulted in higher than 90% reduction in microbial counts. Biofilm formation was demonstrated for the 48 h incubated samples with SEM images.  相似文献   

20.
The lethality of ultrapasteurization treatments (70 °C/1.5 min.) applied at constant temperature (isothermal condition) and at a constantly raising temperature of 2 °C/min (non-isothermal condition) in liquid whole egg (LWE) against two strains of Listeria monocytogenes (STCC 5672 and 4032) and one of Listeria innocua has been investigated. Isothermal survival curves up to 71 °C were obtained, which followed first-order inactivation kinetics. The obtained Dt values indicated that L. innocua was significantly (p < 0.05) more heat resistant than L. monocytogenes strains. Non-significant (p > 0.05) differences were observed among z values (12.4 ± 0.4 °C, 13.1 ± 0.4 °C and 12.2 ± 0.7 °C for L. innocua and L. monocytogenes 5672 and 4032, respectively). Based on obtained Dt and z values, isothermal ultrapasteurization treatment (70 °C/1.5 min.) would provide 3.5-, 5.0-, and 6.5-Log10 cycles of L. innocua and L. monocytogenes 5672 and 4032, respectively. Non-isothermal heating lag phase increased the thermotolerance of Listeria species in LWE. The simulated industrial pasteurization treatment for LWE (heating-up phase from 25 to 70 °C followed by 1.5 min. at 70 °C) would attain 5-Log10 reductions of L. monocytogenes 5672 and 4032, and 3.7-Log10 reductions of L. innocua. Therefore, the safety level of industrial ultrapasteurization concerning L. monocytogenes could be lower than that estimated with data obtained under isothermal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号