首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Detection of Escherichia coli O157:H7 by conventional cultural methods can be difficult in food matrices with a high background flora such as raw ground beef. Raw ground beef samples, artificially contaminated separately with five strains of E. coli O157:H7 at low (~ 0.2 cfu/g) and high (~ 2 cfu/g) levels, were enriched by two enrichment protocols; buffered peptone water (BPW) at 37 °C for 5 h and 24 h and modified buffered peptone water with pyruvate (mBPWp) for 5 h at 37 °C followed by adding selective agents and incubating at 42 °C to 24 h. Detection of added E. coli O157:H7 by real-time PCR (RTiPCR) and recovery on isolation agars was performed before and after PATHATRIX™ immunomagnetic separation (IMS). RTiPCR detection and cultural recovery of inoculated E. coli O157:H7 after 5 h enrichment were poor at 0.21-0.24 cfu/g. The addition of IMS after 5 h enrichment did not improve RTiPCR detection but markedly improved recovery by culturing. By extending enrichment to 24 h, RTiPCR detection improved to 76% for either enrichment protocol without IMS. When 24 h enrichment was followed by IMS, RTiPCR detection was also further improved. Cultural recovery after 24 h enrichment was 56% and 84% without IMS and 100% and 92% after IMS for BPW and mBPWp respectively. Extended enrichment to 24 h followed by IMS was found to be sensitive and reliable for detection and cultural recovery from raw ground beef using either enrichment method.  相似文献   

2.
The enrichment, detection and isolation procedure in the current US FDA BAM have been shown effective for Escherichia coli O157:H7 in a wide variety of foods. Recently reported modifications to the enrichment protocol, including post-enrichment immunomagnetic separation (IMS) procedures have improved sensitivity of the method for alfalfa sprouts. However, cultural isolation on selective agar plates still presents a challenge in this food matrix.  相似文献   

3.
Because sprouted seed products are kept wet during and after production, have high levels of nutrients, and a neutral pH, they are subject to the outgrowth of pathogens such as Escherichia coli O157:H7. For these same reasons, these products also contain high levels of heterotrophic organisms and in particular coliform bacteria. Recent outbreaks have focused attention on the need to improve methodology for isolating this pathogen from sprouts. When 40 E. coli O157:H7 strains were grown in pure culture in enterohemorrhagic E. coli enrichment broth (EEB) as prescribed in the U.S. FDA-Bacteriological Analytical Manual (FDA-BAM) and in EEB modified by varying the cefixime concentration, outgrowth for all strains in EEB was inhibited at 0.05 mg/l but for only 2 of 40 strains when the cefixime level was adjusted to 0.0125 mg/l. These two enrichment formulae were compared to modified E. coli broth (mEC), modified Tryptic Soy Broth with 20 mg/l novobiocin (mTSB + N), modified Buffered Peptone Water (mBPW), and mBPW with added 10 mg/l acriflavin, 10 mg/l cefsulodin, and 8 mg/l vancomycin (mBPW + ACV) for isolation of E. coli O157:H7 from sprouts. These comparisons were performed using low-level (0.12 to 0.42 cfu/g) artificially contaminated alfalfa and mixed salad sprouts. After enrichment, two isolation methods were compared for recovery; direct plating to Tellurite-Cefixime Sorbitol MacConkey agar (TCSMAC) and immunomagnetic separation (IMS) (Dynabeads anti-E. coli O157, Dynal, Oslo, Norway) followed by plating to TCSMAC. In addition, an immunoprecipitin detection kit, VIP (BioControl, Bellevue, WA), was evaluated for detection after enrichment. We found that five of the six enrichments were equivalent for detection or recovery while one enrichment (mTSB + N without agitation) was less productive. Incubation for 24 h was more effective in recovering E. coli O157:H7 from sprouts than 6 h for all enrichment broths. Plating after IMS was more productive than direct plating at these low levels of contamination, yielding recovery in 70 of 90 trials compared to 37 of 90 trials without IMS for six enrichments. The sensitivity of VIP for detection of E. coli O157:H7 varied depending on the enrichment broth. Because of the rapid rate of growth of E. coli O157:H7 in mBPW, the high productivity of mBPW + ACV after 24-h enrichment and its compatibility with both IMS and detection with immunoprecipitin tests, mBPW + ACV at 42 degrees C with agitation was found to be the most promising enrichment protocol for testing sprouts.  相似文献   

4.
Abstract: Leafy greens such as cilantro, contaminated with Escherichia coli O157:H7, have been implicated in cases of human illnesses. High levels of microflora in fresh cilantro make recovery of low numbers of E. coli O157:H7 difficult. To improve upon current methods, immunomagnetic separation (IMS) techniques in combination with real‐time PCR (RTiPCR) and selective enrichment protocols were examined. Rinsates were prepared from cilantro samples inoculated with low (~0.02 CFU/g) and slightly higher (~0.05 CFU/g) levels of E. coli O157:H7. Rinsate portions were enriched in modified buffered peptone water with pyruvate (mBPWp) for 5 h at 37 °C. After 5 h, selective agents were added to samples and further incubated at 42 °C overnight. Detection and recovery were attempted at 5 and 24 h with and without IMS. IMS beads were screened by RTiPCR for simultaneous detection of stx1, stx2, and uidA SNP. Additionally, broth cultures and IMS beads were streaked onto selective agar plates (Rainbow®agar, R&F®E. coli O157 Chromogenic medium, TC‐SMAC and CHROMagar? 0157) for isolation of E. coli O157:H7. Both broth cultures and IMS beads were also acid treated in Trypticase Soy Broth pH 2 prior to plating to selective media to improve upon cultural recovery. Although E. coli O157 strains were detected in most samples by PCR after 5 h enrichment, cultural recovery was poor. However, after 24 h enrichment, both PCR and cultural recovery were improved. Acidification of the broths and the IMS beads prior to plating greatly improved recovery from 24 h enrichment broths by suppressing the growth of competing microorganisms. Practical Application: Detection and recovery of Escherichia coli O157:H7 in fresh produce matrices (e.g., cilantro) can be complicated by high background microflora present in these foods. Rapid detection by molecular methods combined with effective enrichment and isolation procedures such as using immunomagnetic separation (IMS) techniques can quickly identify potential hazards to public health. Additional techniques such as acidification of enrichment broths can exploit acid resistance characteristics of pathogens such as E. coli O157:H7, facilitating their isolation in complex food matrices.  相似文献   

5.
Acid resistance of Escherichia coli O157:H7 strains UT 10 and UT 15 were determined in traditional Amasi fermented for 3 days at ambient temperature (ca 30 °C) and commercial Amasi fermented at 30 °C for 24 h and stored at 7 °C for 2 days. Escherichia coli O157:H7 counts in commercial Amasi were detected at 2.7 log10 cfu/ml after 3 days while those in traditional Amasi could not be detected after the same period. There was no significant difference (p ? 0.05) in the survival of acid adapted (AA) and non-adapted (NA) E. coli O157:H7 in traditional Amasi, while in commercial Amasi, the NA strain survived significantly (p ? 0.05) better than its AA counterpart. Regardless of prior adaptation to acid, E. coli O157:H7 can survive during fermentation and storage of fermented goat milk Amasi. Also, the fermentation time, pH and storage temperature affects the survival of E. coli O157:H7 in the fermented milk.  相似文献   

6.
The occurrence of Escherichia coli O157, O111 and O26 in 159 raw ewe's milk samples was examined. Sample-aliquots were incubated simultaneously in TSB added with yeast extract (YETSB) and mTSB with novobiocin (N-mTSB). Serogroup-specific immunomagnetic separation (IMS) was then used and IMS beads were plated in a cefixime tellurite (CT)-containing media (CT-SMAC, CT-SBMAC and CT-RMAC for E. coli O157, O111 and O26, respectively) and E. coli O157:H7 chromogenic ID agar. A sweep of confluent growth from each medium was examined for the presence of E. coli O157 and O111 using PCR, and for E. coli O26 using a latex agglutination test. Enumeration of E. coli O157 and O111 was performed in the samples tested positive for the correspondent serogroup using the most probable number (MPN) method combined with PCR. Percentage occurrences of E. coli O157, O111 and O26 were 18.2, 8.2 and 5.7, respectively. Mean E. coli O157 and O111 levels were 0.22 and < 0.04 MPN/mL, respectively. Enrichment in YETSB resulted in higher detection rates of E. coli O157 and O26 than in N-mTSB. When YETSB was used as enrichment broth and for these last two serogroups, the analysis of the confluent growth from the CT-media gave more positive results than that from E. coli O157:H7-ID medium.  相似文献   

7.
This study determined the efficacy of actinidin and papain on reducing Listeria monocytogenes and three mixed strains of Escherichia coli O157:H7 populations on beef. The average reduction of E. coli O157:H7 was greater than that of L. monocytogenes and higher concentrations of either protease yielded greater reduction in bacterial populations. For instance, actinidin at 700 mg/ml significantly (p ≤ 0.05) reduced the population of L. monocytogenes by 1.49 log cfu/ml meat rinse after 3 h at 25 & 35 °C, and by 1.45 log cfu/ml rinse after 24 h at 5 °C, while the same actinidin concentration significantly reduced the populations of three mixed strains of E. coli O157:H7 by 1.81 log cfu/ml rinse after 3 h at 25 & 35 °C, and 1.94 log cfu/ml rinse after 24 h at 5 °C. These findings suggest that, in addition to improving the sensory attributes of beef, proteolytic enzymes can enhance meat safety when stored at suitable temperatures.  相似文献   

8.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

9.
Consumption of fecally contaminated green onions has been implicated in several major outbreaks of foodborne illness. The objectives of this study were to investigate the survival and growth of Salmonella and Escherichia coli O157:H7 in green onions during storage and to assess the application of high hydrostatic pressure (HHP) to decontaminate green onions from both pathogens. Bacterial strains resistant to nalidixic acid and streptomycin were used to inoculate green onions at low (∼1 log cfu/g) and high (∼2 log cfu/g) inoculum levels which were then kept at 4 or 22 °C for up to 14 days. Both pathogens grew to an average of 5-6 log cfu/g during storage at 22 °C and the bacterial populations were fairly stable during storage at 4 °C. High-pressure processing of inoculated green onions in the un-wetted, wetted (briefly dipped in water) or soaked (immersed in water for 30 min) conditions at 250-500 MPa for 2 min at 20 °C reduced the population of Salmonella and E. coli O157:H7 by 0.6 to >5 log cfu/g, depending on the pressure level and sample wetness state. The extent of pressure inactivation increased in the order of soaked > wetted > un-wetted state. The pressure sensitivity of the pathogens was also higher at elevated treatment temperatures. Overall, after pressure treatment at 400-450 MPa (soaked) or 450-500 MPa (wetted) for a retention time of 2 min at 20-40 °C, wild-type and antibiotic-resistant mutant strains of Salmonella and E. coli O157:H7 inoculated on green onions were undetectable immediately after treatment and throughout the 15-day storage at 4 °C. The pressure treatments also had minimal adverse impact on most sensorial characteristics as well as on the instrumental color of chopped green onions. This study highlights the promising applications of HHP to minimally process green onions in order to alleviate the risks of Salmonella and E. coli O157:H7 infections associated with the consumption of this commodity.  相似文献   

10.
A stochastic simulation modelling approach was taken to determine the extent of Escherichia coli O157:H7 contamination in fresh-cut bagged lettuce leaving the processing plant. A probabilistic model was constructed in Excel to account for E. coli O157:H7 cross contamination when contaminated lettuce enters the processing line. Simulation of the model was performed using @Risk Palisade© Software, providing an estimate of concentration and prevalence in the final bags of product. Three different scenarios, named S1, S2, and S3, were considered to represent the initial concentration on the contaminated batch entering the processing line which corresponded to 0.01, 1 and 100 cfu/g, respectively. The model was satisfactorily validated based on Standard Error of Prediction (SEP), which ranged from 0.00-35%. ANOVA analysis performed on simulated data revealed that the initial concentration in the contaminated batch (i.e., S1, S2, and S3) did not influence significantly (p = 0.4) the E. coli O157:H7 levels in bags derived from cross contamination. In addition, significantly different (p < 0.001) prevalence was observed at the different levels simulated (S1; S2 and S3). At the lowest contamination level (0.01 cfu/g), bags were cross-contaminated sporadically, resulting in very low E. coli O157:H7 populations (mean: ≤2 cfu/bag) and prevalence levels (<1%). In contrast, higher average prevalence levels were obtained for S2 and S3 corresponding to 3.05 and 13.39%, respectively. Furthermore, the impact of different interventions on E. coli O157:H7 cross-contamination (e.g., pathogen testing, chlorination, irradiation, and cleaning and disinfection procedures) was evaluated. Model showed that the pathogen was able to survive and be present in the final bags in all simulated interventions scenarios although irradiation (0.5 KGy) was a more effective decontamination step in reducing prevalence than chlorination or pathogen testing under the same simulated conditions.  相似文献   

11.
The efficacy of bacteriophages e11/2 and e4/1c as potential biocontrol agents for Escherichia coli O157:H7 in food applications was assessed under conditions relevant to the food chain environment. The stability of each phage was determined following exposure to varying environmental conditions (pH, temperature, water activity, and sodium chloride) and the ability of each phage to infect and reduce E. coli O157:H7 numbers under selected conditions was also examined. Both e11/2 and e4/1c significantly (p < 0.05) reduced numbers of E. coli O157:H7 when exposed to pH values ranging from pH > 4 to pH 9, temperatures from 4 °C to 37 °C, water activity values of 0.87 or 0.91 to 1.00 and NaCl concentrations of 1% to 2.5%. Subsequently, a cocktail of both phages was used (e11/2 and e4/1c) to assess reduction of E. coli O157:H7 on cattle hide pieces. This involved inoculating pieces of hide (20 × 20 cm) with E. coli O157:H7 (approximately 106 cfu/cm2) which were subsequently treated with either a suspension of a phage cocktail, consisting of e11/2 and e4/1c (multiplicity of infection of 1000 and 10,000, respectively) or water or not treated. Two different investigations were carried out; immediately or 1 h after treatment application was performed in different experiments. Swab samples taken immediately after phage treatment showed no significant (p > 0.05) reduction of E. coli O157:H7 numbers compared to the water treated or untreated samples. However, an extended exposure time of 1 h following phage application revealed a significant reduction (p < 0.05) (1.5 log10 cfu/cm2 reduction) in E. coli O157:H7 numbers compared to the numbers recovered on samples treated with water only. These findings demonstrate the potential use of e11/2 and e4/1c phages as a biocontrol agent for E. coli O157:H7 within various stages of the food chain, including on cattle hide.  相似文献   

12.
Alfalfa and other seed sprouts have been implicated in several Escherichia coli O157:H7 and Salmonella spp. human illness outbreaks in the U.S. Continuing food safety issues with alfalfa seeds necessitate the need for discovery and use of novel and effective antimicrobials. The potential use of caprylic acid (CA) and monocaprylin (MC) for reducing E. coli O157:H7 and Salmonella spp. populations on alfalfa seeds was evaluated. The effectiveness of three concentrations of CA and MC (25, 50, and 75 mM) to reduce E. coli O157:H7 and Salmonella spp. populations in 0.1% peptone water and on alfalfa seeds was evaluated. Surviving populations of E. coli O157:H7 and Salmonella spp. were enumerated by direct plating on tryptic soy agar (TSA). Non-inoculated alfalfa seeds were soaked for up to 120 min to evaluate the effect of CA and MC solutions on seed germination rate. For planktonic cells, the efficacy of the treatments was: 75 MC > 50 MC > 25 MC > 75 CA > 50 CA > 25 CA. Both E. coli O157:H7 and Salmonella spp. were reduced to below the detection limit (0.6 log CFU/ml) within 10 min of exposure to 75 MC from initial populations of 7.65 ± 0.10 log CFU/ml and 7.71 ± 0.11 log CFU/ml, respectively. Maximum reductions of 1.56 ± 0.25 and 2.56 ± 0.17 log CFU/g for E. coli O157:H7 and Salmonella spp., respectively, were achieved on inoculated alfalfa seeds (from initial populations of 4.74 ± 0.62 log CFU/g and 5.27 ± 0.20 log CFU/g, respectively) when treated with 75 MC for 90 min. Germination rates of CA or MC treated seeds ranged from 84% to 99%. The germination rates of CA or MC soaked seeds and water soaked seeds (control) were similar (P > 0.05) for soaking times of ≤ 90 min. Monocaprylin (75 mM) can be used to reduce E. coli O157:H7 and Salmonella spp. on alfalfa seeds without compromising seed viability.  相似文献   

13.
In the present study, inhibitory effects of the hydrosols of thyme, black cumin, sage, rosemary and bay leaf were investigated against Salmonella Typhimurium and Escherichia coli O157:H7 inoculated to apple and carrots (at the ratio of 5.81 and 5.81 log cfu/g for S. Typhimurium, and 5.90 and 5.70 log cfu/g for E. coli O157:H7 on to apple and carrot, respectively). After the inoculation of S. Typhimurium or E. coli O157:H7, shredded apple and carrot samples were washed with the hydrosols and sterile tap water (as control) for 0, 20, 40 and 60 min. While the sterile tap water was ineffective in reducing (P > 0.05) S. Typhimurium and E. coli O157:H7, 20 min hydrosol treatment caused a significant (P < 0.05) reduction compared to the control group. On the other hand, thyme and rosemary hydrosol treatments for 20 min produced a reduction of 1.42 and 1.33 log cfu/g respectively in the E. coli O157:H7 population on apples. Additional reductions were not always observed with increasing treatment time. Moreover, thyme hydrosol showed the highest antibacterial effect on both S. Typhimurium and E. coli O157:H7 counts. Inhibitory effect of thyme hydrosol on S. Typhimurium was higher than that for E. coli O157:H7. Bay leaf hydrosol treatments for 60 min reduced significantly (P < 0.05) E. coli O157:H7 population on apple and carrot samples. In conclusion, it was shown that plant hydrosols, especially thyme hydrosol, could be used as a convenient sanitizing agent during the washing of fresh-cut fruits and vegetables.  相似文献   

14.
This study evaluated chemical tenderizers and cooking methods to inactivate Escherichia coli O157:H7 in ground beef patties (model system for non-intact beef). Ground beef was inoculated with E. coli O157:H7 and mixed with (i) nothing (control), (ii) calcium chloride (CC) and flavoring agents (FA), (iii) CC, FA, and acetic acid (AA), (iv) sodium chloride (SC), sodium tripolyphosphate (ST), and potassium lactate (PL), and (v) the combination of SC, ST, PL, and AA. Patties were stored in aerobic or vacuum bags at − 20, 4, and 12 °C. Samples were grilled, broiled, or pan-fried to 60 or 65 °C. Total bacterial and E. coli O157:H7 populations remained unchanged during storage. Broiling was more effective in reducing E. coli O157:H7 than grilling and pan-frying, and acidified tenderizers reduced E. coli O157:H7 more than non-acidified tenderizers in broiling. Higher reductions were observed at 65 °C than 60 °C in broiled and grilled samples. These results indicate that acidified tenderizers and broiling may be useful in non-intact beef safety.  相似文献   

15.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

16.
BAX, a polymerase chain reaction (PCR)-based pathogen detection system, was used to survey retail sprouts and mushrooms for contamination with Escherichia coli O157:H7, Salmonella, Listeria spp., and Listeria monocytogenes. No Salmonella or E. coli O157:H7 was detected in the 202 mushroom and 206 alfalfa sprout samples screened. L. monocytogenes was detected in one sprout sample, and seven additional sprout samples tested positive for the genus Listeria. BAX also detected Listeria species in 17 of the mushroom samples. Only 6 of 850 PCR assays (0.7%) failed to amplify control DNA, and therefore reagent failures and the inhibition of PCR by plant compounds were rare. The sensitivity of the detection system was evaluated by assaying samples inoculated with 10 CFU of each of the pathogens. One hundred seventy-two alfalfa sprout samples were inoculated with E. coli O157:H7, and two sets of 130 samples were experimentally contaminated with Salmonella Enteritidis and L. monocytogenes. The frequency of detection depended on the protocols used for inoculation and culturing. Inoculation of samples with approximately 10 CFU from frozen stocks yielded detection rates of 87.5 and 94.5% for L. monocylogenes and Salmonella Enteritidis, respectively, in mushrooms. The corresponding rates for alfalfa sprouts were 94.5 and 76.3%. The E. coli O157:H7 detection rate was 100% for mushrooms but only 48.6% for sprouts when standard BAX culture protocols were used. The substitution of an overnight incubation in modified E. coli medium for the 3-h brain heart infusion incubation increased the rate of E. coli O157:H7 detection to 75% for experimentally contaminated sprouts. The detection rate was 100% when E. coli O157:H7 cells from a fresh overnight culture were used for the inoculation. Test sensitivity is therefore influenced by the type of produce involved and is probably related to the growth of pathogens in the resuscitation and enrichment media.  相似文献   

17.
Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut produce company. Zataria EO emulsions of 3%, 5% and 10% reduced Escherichia coli O157:H7 by 1.7, 2.2 and 3.5 log cfu/g in baby-leaf salads after 5 days of storage at 7 °C. By contrast, reductions in E. coli O157:H7 counts remained the same when clove was applied at concentrations of 5% and 10% (2.5 log cfu/g reduction). Oregano (10%) reduced inoculated E. coli O157:H7 counts in baby-leaf salads by a maximum of 0.5 log cfu/g after 5 days of storage. Zataria showed strong antimicrobial efficacy against E. coli O157:H7 and also against the endogenous microbiota of baby-leaf salads stored for 9 days. Feline calicivirus (FCV), a norovirus surrogate, survived on inoculated baby-leaf salads during refrigerated storage (9 days at 7 °C) regardless of treatment. Refrigeration temperatures completely annulled the effectiveness of the EOs against FCV inoculated in baby-leaf salads as occurred in FCV cultures. This study shows that EOs, and zataria in particular, have great potential use as an additional barrier to reduce contamination-related risks in baby-leaf salads. However, further research should be done into foodborne viruses in order to improve food safety.  相似文献   

18.
Microorganisms persisting in slaughter plant environments may develop acid resistance and be translocated to other environmental surfaces or products. The objective of this study was to evaluate the potential of Escherichia coli O157:H7 to form biofilms and maintain acid resistance, under different culture habituation scenarios, on stainless steel coupons (2 × 5 × 0.08 cm), in the presence of beef carcass decontamination runoff fluids (washings). Coupons were stored in test tubes with unsterilized water washings (WW; pH 6.94) or lactic acid washings (LAW; pH 4.98), which were inoculated with E. coli O157:H7 (103–104 CFU/ml) and incubated at 15 (24 or 48 h) or 35 °C (7 or 24 h), simulating different habituation scenarios on sites of a slaughter plant, including sanitation and overnight drying, during consecutive operational shifts. Acid resistance (AR) of planktonic and detached E. coli O157:H7 cells was assessed in tryptic soy broth adjusted to pH 3.5 with lactic acid. The highest pre-drying attachment and AR of E. coli O157:H7 were observed after 24 h at 35 °C and 48 h at 15 °C. Drying reduced (P < 0.05) recovery of attached E. coli O157:H7 cells; however, exposure of dried coupons to uninoculated washings allowed recovery of attached E. coli O157:H7, which restored AR, especially under conditions that favored post-drying growth. Exposure of attached cells to 50 ppm PAA for 45 s before drying, as well as habituation in LAW, reduced the recovery and AR of E. coli O157:H7. Therefore, incomplete removal of biofilms may result in cells of increased AR, especially in sites within a slaughter plant, in which liquid meat wastes may remain for long periods of time.  相似文献   

19.
The presence of Escherichia coli in contaminated food products is commonly attributed to faecal contamination when they are improperly handled and/or when inactivation treatments fail. Adaptation of E. coli at low pH and aw levels can vary at different temperatures depending on the serotype, thus more detailed studies are needed. In this work, a screening to assess the growth of four pathogenic serotypes of E. coli (O55:H6; O59:H21; O158:H23 and O157:H7) was performed. Subsequently, boundary models were elaborated with the fastest serotype selected at different temperatures (8, 12 and 16 °C), and inoculum levels (2, 3 and 4 log cfu/mL) as function of pH (7.00–5.00) and aw (0.999–0.960). Finally, the growth kinetics of E. coli was described in the conditions that allowed growth. Results obtained showed that the serotypes O157:H7 and O59:H21 did not grow at more stringent conditions (8 °C; pH 5.50), while the E. coli O158:H23 was the best adapted, resulting in faster growth. The logistic regression models presented a good adjustment to data observed since more than 96.7% of cases were correctly classified. The growth interface was shifted to more limited conditions as the inoculum size was higher. Detection times (td, h) and their variability were higher at low levels of the environmental factors studied. This work provides insight on the growth kinetics of E. coli at various environmental conditions.  相似文献   

20.
M.I. Bazhal  G.S.V. Raghavan 《LWT》2006,39(4):420-426
Inactivation of Escherichia coli O157:H7 in liquid whole egg using thermal and pulsed electric field (PEF) batch treatments, alone and in combination with each other, was investigated. Electric field intensities in the range from 9 to 15 kV/cm were used in the study. The threshold temperature for thermal inactivation alone was 50 °C. PEF enhanced the inactivation of E. coli O157:H7 when the sample temperature was higher than the thermal threshold temperature. The maximum inactivation of E. coli O157:H7 obtained using thermal treatment alone was ∼2 logs at 60 °C. However, combined heat and PEF treatments resulted in up to 4 log reduction of the pathogen. The kinetic rate constants kTE for combined treatments at 55 °C varied from 0.025 to 0.119 pulse−1 whereas the rate constants at 60 °C ranged from 0.034 to 0.228 pulse−1. These results indicated a synergy between temperature and electric field on the inactivation of E. coli O157:H7 within a given temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号