首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Transient macromolecular complexes are often formed by protein-protein interaction domains (e.g., PDZ, SH2, SH3, WW), which are often regulated (positively or negatively) by phosphorylation. To address the in vitro analysis of PDZ domain regulation by such phosphorylation, we improved the inverted peptide method. This method is based on standard SPOT synthesis, followed by inversion of the peptide under acidic conditions to generate the free C termini necessary for PDZ domain ligand recognition. The benefit of the newly introduced acidic conditions is the preservation of the incorporated phosphate group during peptide synthesis. Furthermore, the improved method is more robust and shows an increased signal-to-noise ratio. As representative examples, we used the AF6, ERBIN, and SNA1 (alpha-1-syntrophin) PDZ domains to analyze the influence of ligand-position-dependent phosphorylation. We could clearly demonstrate severe down-regulation by phosphorylation of the PDZ ligand position -2 (<50 %) and slightly less at position -1 ( approximately 50 %). These results are specific and reproducible for all three PDZ domains. Finally, we confirmed the influence of negative regulation by using the protein kinase BCR as the AF6 PDZ domain ligand. For the first time, this approach allows the SPOT synthesis technique to be used to screen large libraries of phosphorylated peptides in vitro. This should ultimately help in the identification of phosphorylation-dependent regulation mechanisms in vivo.  相似文献   

3.
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.  相似文献   

4.
The development of novel delivery systems for therapeutic substancesincludes targeting of the carriers to a specific site or tissuewithin the body of the recipient. This can be accomplished byappropriate receptor-binding domains and requires linking ofthese domains to the carrier. We have used recombinantly expressedpolyomavirus-like particles as a model system and inserted thesequence of a WW domain into different surface loops of theviral capsid protein VP1. In one variant, the WW domain maintainedits highly selective binding properties of proline-rich ligandsand showed an increased affinity but also an accelerated association/dissociationequilibrium compared to the isolated WW domain, thus allowinga short-term coupling of external ligands onto the surface ofthe virus-like particles.  相似文献   

5.
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.  相似文献   

6.
Pre-mRNA splicing is a key process in the regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, Nrl1 regulates splicing and expression of several genes and non-coding RNAs, and also suppresses the accumulation of R-loops. Here, we report analysis of interactions between Nrl1 and selected RNA-processing proteins and regulation of Nrl1 function by phosphorylation. Bacterial two-hybrid system (BACTH) assays revealed that the N-terminal region of Nrl1 is important for the interaction with ATP-dependent RNA helicase Mtl1 while the C-terminal region of Nrl1 is important for interactions with spliceosome components Ctr1, Ntr2, and Syf3. Consistent with this result, tandem affinity purification showed that Mtl1, but not Ctr1, Ntr2, or Syf3, co-purifies with the N-terminal region of Nrl1. Interestingly, mass-spectrometry analysis revealed that in addition to previously identified phosphorylation sites, Nrl1 is also phosphorylated on serines 86 and 112, and that Nrl1-TAP co-purifies with Cka1, the catalytic subunit of casein kinase 2. In vitro assay showed that Cka1 can phosphorylate bacterially expressed Nrl1 fragments. An analysis of non-phosphorylatable nrl1 mutants revealed defects in gene expression and splicing consistent with the notion that phosphorylation is an important regulator of Nrl1 function. Taken together, our results provide insights into two mechanisms that are involved in the regulation of the spliceosome-associated factor Nrl1, namely domain-specific interactions between Nrl1 and RNA-processing proteins and post-translational modification of Nrl1 by phosphorylation.  相似文献   

7.
The WW domains are known as the smallest naturally occurring, monomeric, triple-stranded, antiparallel beta-sheet domains. Hence, we chose the FBP28 WW domain as a model to investigate the stability of the beta-sheet structure at the amino acid level in the context of its function (ligand binding). The structure-function relationship was investigated through a complete substitution analysis of the FBP28 WW domain, with variants synthesized as a cellulose-bound peptide array. The functionality of the FBP28 WW domain variants was examined by probing the peptide array for ligand binding. In addition, selected FBP28 WW domain variants were investigated by CD measurements to determine the stability of the antiparallel beta-sheet structure. We discuss the correlation between structure stability and functionality for the FBP28 WW domain, as well as the effect of ligand-induced structure stabilization.  相似文献   

8.
PDZ domains are ubiquitous small protein domains that are mediators of numerous protein–protein interactions, and play a pivotal role in protein trafficking, synaptic transmission, and the assembly of signaling‐transduction complexes. In recent years, PDZ domains have emerged as novel and exciting drug targets for diseases (in the brain in particular), so understanding the molecular details of PDZ domain interactions is of fundamental importance. PDZ domains bind to a protein partner at either a C‐terminal peptide or internal peptide motifs. Here, we examined the importance of a conserved Lys/Arg residue in the ligand‐binding site of the second PDZ domain of PSD‐95, by employing a semisynthetic approach. We generated six semisynthetic PDZ domains comprising different proteogenic and nonproteogenic amino acids representing subtle changes of the conserved Lys/Arg residue. These were tested with four peptide interaction partners, representing the two different binding modes. The results highlight the role of a positively charged amino acid in the β1–β2 loop of PDZ domains, and show subtle differences for canonical and noncanonical interaction partners, thus providing additional insight into the mechanism of PDZ/ligand interaction.  相似文献   

9.
The Syk tandem Src homology 2 domain (Syk tSH2) constitutes a flexible protein module involved in the regulation of Syk kinase activity. The Syk tSH2 domain is assumed to function by adapting the distance between its two SH2 domains upon bivalent binding to diphosphotyrosine ligands. A thermodynamic and kinetic analysis of ligand binding was performed by using surface plasmon resonance (SPR). Furthermore, the effect of binding on the Syk tSH2 structural dynamics was probed by hydrogen/deuterium exchange and electrospray mass spectrometry (ESI-MS). Two ligands were studied: 1, a flexible peptide derived from the tSH2 recognition ITAM sequence at the gamma chain of the FcepsilonRI-receptor, and 2, a ligand in which the amino acids between the two SH2 binding motifs in ligand 1 have been replaced by a rigid linker of comparable length. Both ligands display comparable affinity for Syk tSH2 at 25 degrees C, yet a major difference in thermodynamics is observed. Upon binding of the rigid ligand, 2, the expected entropy advantage is not realized. On the contrary, 2 binds with a considerably higher entropy price of approximately 9 kcal mol-1, which is attributed to a further decrease in protein flexibility upon binding to this rigid ligand. The significant reduction in deuterium incorporation in the Syk tSH2 protein upon binding of either 1 or 2, as monitored by ESI-MS, indicates a major reduction in protein dynamics upon binding. The results are consistent with a two-step binding model: after an initial binding step, a rapid structural change of the protein occurs, followed by a second binding step. Such a bivalent binding model allows high affinity and fast dissociation kinetics, which are very important in transient signal-transduction processes.  相似文献   

10.
Disruption of calmodulin (CaM)‐based protein interactions has been touted as a potential means for modulating several disease pathways. Among these is SOX9, which is a DNA binding protein that is involved in chrondrocyte differentiation and regulation of the hormones that control sexual development. In this work, we employed a “magnetic fishing”/mass spectrometry assay in conjunction with intrinsic fluorescence to examine the interaction of CaM with the CaM‐binding domain of SOX9 (SOX‐CAL), and to assess the modulation of this interaction by known anti‐CaM compounds. Our data show that there is a high affinity interaction between CaM and SOX‐CAL (27±9 nM ), and that SOX‐CAL bound to the same location as the well‐known CaM antagonist melittin; unexpectedly, we also found that addition of CaM‐binding small molecules initially produced increased SOX‐CAL binding, indicative of binding to both the well‐known high‐affinity CaM binding site and a second, lower‐affinity binding site.  相似文献   

11.
[Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family of FHA domains by a bioinformatics approach. The phosphopeptide-dependent dynamics of an FHA domain, SH2 domain, and PTB domain suggest a common theme: rigid, preformed binding surfaces support van der Waals contacts that provide favorable binding enthalpy. Despite the lack of pronounced conformational changes in FHA domains linked to binding events, more subtle adjustments may be possible. In the one FHA domain tested, phosphothreonine peptide binding is accompanied by increased flexibility just outside the binding site and increased rigidity across the beta-sandwich. The folding of the same FHA domain progresses through near-native intermediates that stabilize the recognition loops in the center of the phosphoprotein-binding surface; this may promote rigidity in the interface and affinity for targets phosphorylated on threonine.  相似文献   

12.
PDZ domains are among the most common modules in eukaryotic, including human, genomes. They are found exclusively in large, multidomain cytosolic proteins--often with other domains that belong to a variety of families--and are involved in a plethora of physiological and pathophysiological events. PDZ domains mediate protein-protein interactions by binding to solvent-exposed and extended C-terminal short fragments of membrane-associated proteins, such as receptors and ion channels. Most of what is known about the mechanisms of target binding by PDZ domains is inferred from studies that involve isolated recombinant PDZ domains and short synthetic peptides that represent the targets. These binary systems constitute an obvious oversimplification and disregard factors such as noncanonical modes of binding and enhanced affinity due to multimeric interactions mediated by clusters and oligomers of PDZ-domain-containing proteins. We have tested whether the interaction between a dimeric form of PDZ domain that mimics a functional dimeric guanine nucleotide exchange factor, PDZ-RhoGEF (PDZ-containing RhoA-specific guanine nucleotide exchange factor) or LARG (leukemia-associated RhoA specific guanine nucleotide exchange factor), and a bivalent peptide that mimics the dimer of the plexin B receptor, could enhance the interaction between the two moieties. Peptide dimerization was achieved by cross-linking the N-terminal ends of peptides attached to Wang resin with poly(ethylene glycol) spacers (30-45 Angstroms in length). The interaction of dimeric PDZ domains with dimeric peptides resulted in an up to 20-fold increase in affinity compared to the simple binary system. This is consistent with the notion that multimerization of both receptors and PDZ-containing proteins might constitute an important regulatory mechanism.  相似文献   

13.
In the active centre of pancreatic phospholipase A2 His48 isat hydrogen-bonding distance to Asp99. This Asp-His couple isassumed to act together with a water molecule as a catalytictriad. Asp99 is also linked via an extended hydrogen bondingsystem to the side chains of Tyr52 and Tyr73. To probe the functionof the fully conserved Asp99, Tyr52 and Tyr73 residues in phospholipaseA2, the Asp99 residue was replaced by Asn, and each of the twotyrosines was separately replaced by either a Phe or a Gln.The catalytic and binding properties of the Phe52 and Phe73mutants did not change significantly relative to the wild-typeenzyme. This rules out the possibility that either one of thetwo Tyr residues in the wild-type enzyme can function as anacyl acceptor or proton donor in catalysis. The Gln73 mutantcould not be obtained in any significant amounts probably dueto incorrect folding. The Gln52 mutant was isolated in low yield.This mutant showed a large decrease in catalytic activity whileits substrate binding was nearly unchanged. The results suggesta structural role rather than a catalytic function of Tyr52and Tyr73. Substitution of asparagine for aspartate hardly affectsthe binding constants for both monomeric and micellar substrateanalogues. Kinetic characterization revealed that the Asn99mutant has retained no less than 65% of its enzymatic activityon the monomeric substrate rac 1,2-dihexanoyldithio-propyl-3-phosphocholine,probably due to the fact that during hydrolysis of monomericsubstrate by phospholipase A2 proton transfer is not the rate-limitingstep. The Asp to Asn substitution decreases the catalytic rateon micellar 1,2-dioctanoyl-sn-glycero-3-phosphocholine 25-fold.To explain this remaining activity we suggest that in the mutantthe Asn99 orients His48 in the same way as Asp99 orients His48in native phospholipase A2 and that the lowered activity iscaused by a reduced stabilization of the transition state.  相似文献   

14.
The muscarinic acetylcholine G-protein-coupled receptors are implicated in diseases ranging from cognitive dysfunctions to smooth-muscle disorders. To provide a structural basis for drug design, we used the MembStruk computational method to predict the 3D structure of the human M1 muscarinic receptor. We validated this structure by using the HierDock method to predict the binding sites for three agonists and four antagonists. The intermolecular ligand-receptor contacts at the predicted binding sites agree well with deductions from available mutagenesis experiments, and the calculated relative binding energies correlate with measured binding affinities. The predicted binding site of all four antagonists is located between transmembrane (TM) helices 3, 4, 5, 6, and 7, whereas the three agonists prefer a site involving residues from TM3, TM6, and TM7. We find that Trp 157(4) contributes directly to antagonist binding, whereas Pro 159(4) provides an indirect conformational switch to position Trp 157(4) in the binding site (the number in parentheses indicates the TM helix). This explains the large decrease in ligand binding affinity and signaling efficacy by mutations of Trp 157(4) and Pro 159(4) not previously explained by homology models. We also found that Asp 105(3) and aromatic residues Tyr 381(6), Tyr 404(7), and Tyr 408(7) are critical for binding the quaternary ammonium head group of the ligand through cation-pi interactions. For ligands with a charged tertiary amine head group, we suggest that proton transfer from the ligand to Asp 105(3) occurs upon binding. Furthermore, we found that an extensive aromatic network involving Tyr 106(3), Trp 157(4), Phe 197(5), Trp 378(6), and Tyr 381(6) is important in stabilizing antagonist binding. For antagonists with two terminal phenyl rings, this aromatic network extends to Trp 164(4), Tyr 179(extracellular loop 2), and Phe 390(6) located at the extracellular end of the TMs. We find that Asn 382(6) forms hydrogen bonds with selected antagonists. Tyr381(6) and Ser 109(3) form hydrogen bonds with the ester moiety of acetylcholine, which binds in the gauche conformation.  相似文献   

15.
As one of the most important post-translational modifications (PTMs), phosphorylation refers to the binding of a phosphate group with amino acid residues like Ser (S), Thr (T) and Tyr (Y) thus resulting in diverse functions at the molecular level. Abnormal phosphorylation has been proved to be closely related with human diseases. To our knowledge, no research has been reported describing specific disease-associated phosphorylation sites prediction which is of great significance for comprehensive understanding of disease mechanism. In this work, focusing on three types of leukemia, we aim to develop a reliable leukemia-related phosphorylation site prediction models by combing deep convolutional neural network (CNN) with transfer-learning. CNN could automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of leukemia-related phosphorylation site prediction. With the largest dataset of myelogenous leukemia, the optimal models for S/T/Y phosphorylation sites give the AUC values of 0.8784, 0.8328 and 0.7716 respectively. When transferred learning on the small size datasets, the models for T-cell and lymphoid leukemia also give the promising performance by common sharing the optimal parameters. Compared with other five machine-learning methods, our CNN models reveal the superior performance. Finally, the leukemia-related pathogenesis analysis and distribution analysis on phosphorylated proteins along with K-means clustering analysis and position-specific conversation profiles on the phosphorylation site all indicate the strong practical feasibility of our easy-to-use CNN models.  相似文献   

16.
The type-1 insulin-like growth factor receptor (IGF-1R) is the cognate tyrosine kinase receptor for the insulin-like growth factor IGF-I and is expressed widely in many foetal and postnatal tissue cells. IGF-1R is overexpressed in a number of human tumour types and is a valid target for anti-cancer therapeutic efforts. Designing antagonists for IGF-1R would be greatly facilitated by the availability of structural information on the complex between IGF-I and IGF-1R. In the present work we model the three-dimensional structure of the complex between IGF-I and the first three domains of IGF-1R using a macromolecular docking method guided by selected experimental data. Interface metrics indicative of the binding affinity and reliability of the model are computed and compared with other biomolecular complexes. This model is consistent with experimental chimerical and mutagenesis data, provides a structural basis for understanding the primary interaction of IGF-I with its receptor and facilitates design of antagonist ligands.  相似文献   

17.
Galectin‐1 (Gal‐1), a ubiquitous β‐galactoside‐binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal‐1 depend on its affinity for β‐galactoside‐containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr‐Xxx‐Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal‐1–asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr‐Xxx‐Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr‐Xxx‐Tyr peptides studied do not bind to Gal‐1, whereas their binding to ASF is clearly detected. 15N,1H HSQC titrations with 15N‐labeled Gal‐1 confirm the absence of any peptide–Gal‐1 interaction. These data indicate that the Tyr‐Xxx‐Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.  相似文献   

18.
PSD‐95 is a scaffolding protein of the MAGUK protein family, and engages in several vital protein–protein interactions in the brain with its PDZ domains. It has been suggested that PSD‐95 is composed of two supramodules, one of which is the PDZ1‐2 tandem domain. Here we have developed rigidified high‐affinity dimeric ligands that target the PDZ1‐2 supramodule, and established the biophysical parameters of the dynamic PDZ1‐2/ligand interactions. By employing ITC, protein NMR, and stopped‐flow kinetics this study provides a detailed insight into the overall conformational energetics of the interaction between dimeric ligands and tandem PDZ domains. Our findings expand our understanding of the dynamics of PSD‐95 with potential relevance to its biological role in interacting with multivalent receptor complexes and development of novel drugs.  相似文献   

19.
The identification of various isoforms of olfactory binding proteins is of major importance to elucidate their involvement in detection of pheromones and other odors. Here, we report the characterization of the phosphorylation of OBP (odorant binding protein) and Von Ebner’s gland protein (VEG) from the pig, Sus scrofa. After labeling with specific antibodies raised against the three types of phosphorylation (Ser, Thr, Tyr), the phosphate-modified residues were mapped by using the beta-elimination followed by Michael addition of dithiothreitol (BEMAD) method. Eleven phosphorylation sites were localized in the pOBP sequence and nine sites in the VEG sequence. OBPs are secreted by Bowman’s gland cells in the extracellular mucus lining the nasal cavity. After tracking the secretion pathway in the rough endoplasmic reticulum of these cells, we hypothesize that these proteins may be phosphorylated by ectokinases that remain to be characterized. The existence of such a regulatory mechanism theoretically increases the number of OBP variants, and it suggests a more specific role for OBPs in odorant coding than the one of odorant solubilizer and transporter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chrystelle Le Danvic and Fanny Brimau contributed equally to the work.  相似文献   

20.
The importance of a cluster of conserved aromatic residues of human epidermal growth factor (hEGF) to the receptor binding epitope is suggested by the interaction of His10 and Tyr13 of the A-loop with Tyr22 and Tyr29 of the N-terminal beta-sheet to form a hydrophobic surface on the hEGF protein. Indeed, Tyr13 has previously been shown to contribute a hydrophobic determinant to receptor binding. The roles of His10, Tyr22 and Tyr29 were investigated by structure-function analysis of hEGF mutant analogues containing individual replacements of each residue. Substitutions with aromatic residues or a leucine at position 10 retained receptor affinities and agonist activities similar to wild- type indicating that an aromatic residue is not essential. Variants with polar, charged or aliphatic substitutions altered in size and/or hydrophobicity exhibited reduced binding and agonist activities. 1- Dimensional 1H NMR spectra of high, moderate and low-affinity analogues at position 10 suggested only minor alterations in hEGF native structure. In contrast, a variety of replacements were tolerated at position 22 or 29 indicating that neither aromaticity nor hydrophobicity of Tyr22 and Tyr29 is required for receptor binding. CD spectra of mutant analogues at position 22 or 29 indicated a correlation between loss of receptor affinity and alterations in hEGF structure. The results indicate that similar to Tyr13, His10 of hEGF contributes hydrophobicity to the receptor binding epitope, whereas Tyr22 and Tyr29 do not appear to be directly involved in receptor interactions. The latter conclusion, together with previous studies, suggests that hydrophobic residues on only one face of the N-terminal beta-sheet of hEGF are important in receptor recognition.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号