首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Sortase A (SrtA) is a membrane-associated enzyme that anchors surface-exposed proteins to the cell wall envelope of Gram-positive bacteria such as Staphylococcus aureus. As SrtA is essential for Gram-positive bacterial pathogenesis but dispensable for microbial growth or viability, SrtA is considered a favorable target for the enhancement of novel anti-infective drugs that aim to interfere with key bacterial virulence mechanisms, such as biofilm formation, without developing drug resistance. Here, we used virtual screening to search an in-house natural compound library and identified two natural compounds, N1287 (Skyrin) and N2576 ((4,5-dichloro-1H-pyrrol-2-yl)-[2,4-dihydroxy-3-(4-methyl-pentyl)-phenyl]-methanone) that inhibited the enzymatic activity of SrtA. These compounds also significantly reduced the growth of S. aureus but possessed moderate mammalian toxicity. Furthermore, S. aureus strains treated with these compounds exhibited reduction in adherence to host fibrinogen, as well as biofilm formation. Hence, these compounds may represent an anti-infective therapy without the side effects of antibiotics.  相似文献   

2.
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients’ lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.  相似文献   

3.
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages—(1) attachment; (2) proliferation; (3) dispersal—and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.  相似文献   

4.
5.
目的建立一种快速检测金黄色葡萄球菌的液相芯片检测方法,并进行初步应用。方法将金黄色葡萄球菌单克隆抗体(mAb930)与聚苯乙烯微球偶联,结合双抗体夹心技术建立金黄色葡萄球菌液相芯片检测方法,通过L(934)正交设计试验优化方法的反应条件;对建立的方法进行灵敏度和特异性验证;应用建立的方法检测200份食品样品,并与国家标准检测方法进行比较。结果所建立的检测方法的最佳反应条件为:多克隆抗体工作浓度为1∶100,生物素标记的二抗工作浓度为1∶1 000,链霉亲和素-藻红蛋白的工作浓度为2μg/ml,生物素标记的二抗与SA-PE的反应时间为40 min;建立的方法检测金黄色葡萄球菌的灵敏度可达103CFU/ml,检测其他常见食源性致病菌无交叉反应;建立的方法与国家标准方法检测200份食品样品的结果基本相符。结论已建立了一种快速检测食品中金黄色葡萄球菌的液相芯片检测方法,能够应用于实际样品的检测。  相似文献   

6.
Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70–80% killing at 50–100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.  相似文献   

7.
A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.  相似文献   

8.
目的在大肠埃希菌中表达金黄葡萄球菌野生株肠毒素B(SEB)重组蛋白,并进行纯化。方法采用PCR方法从金黄葡萄球菌基因组中扩增出SEB基因片段,与pMD18-T载体连接,构建重组质粒pMD18-T/SEB,测序分析后,亚克隆入表达载体pGEX-4T-2,转化感受态E.coliJM109,IPTG诱导表达。表达产物采用B-PER GST Fusion Protein Purification Kit纯化后进行Western blot鉴定。结果SEB基因扩增片段大小为705bp,测序结果显示与金黄葡萄球菌S6株序列相比无碱基的插入或缺失,同源性为98.4%,存在11个碱基变异,其中7个为无义突变,4个为有义突变(突变位点位于第364、699、899和988位,编码氨基酸变化分别为:Ser→Ala、Gln→His、Asn→Ser和Met→Leu);表达的含GST的融合蛋白相对分子质量约53000,纯化后经SDS-PAGE分析,可见单一条带。Western blot显示表达产物可被兔抗SEB抗体所识别。结论已成功表达并纯化了金黄葡萄球菌野生株SEB重组蛋白,为开发SEB免疫诊断试剂提供了材料。  相似文献   

9.
The bacterial pathogen Staphylococcus aureus controls many aspects of virulence by using the accessory gene regulator (agr) quorum sensing (QS) system. The agr system is activated by a macrocyclic peptide signal known as an autoinducing peptide (AIP). We sought to develop structurally simplified mimetics of AIPs for use as chemical tools to study QS in S. aureus. Herein, we report new peptidomimetic AgrC receptor inhibitors based on a tail‐truncated AIP‐II peptide that have almost analogous inhibitory activities to the parent peptide. Structural comparison of one of these peptidomimetics to the parent peptide and a highly potent, all‐peptide‐derived, S. aureus agr inhibitor (AIP‐III D4A) revealed a conserved hydrophobic motif and overall amphipathic nature. Our results suggest that the AIP scaffold is amenable to structural mimicry and minimization for the development of synthetic agr inhibitors.  相似文献   

10.
The emergence of bacteria resistant to conventional antibiotics is of great concern in modern medicine because it renders ineffectiveness of the current empirical antibiotic therapies. Infections caused by vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-intermediate S. aureus (VISA) strains represent a serious threat to global health due to their considerable morbidity and mortality rates. Therefore, there is an urgent need of research and development of new antimicrobial alternatives against these bacteria. In this context, the use of antimicrobial peptides (AMPs) is considered a promising alternative therapeutic strategy to control resistant strains. Therefore, a wide number of natural, artificial, and synthetic AMPs have been evaluated against VRSA and VISA strains, with great potential for clinical application. In this regard, we aimed to present a comprehensive and systematic review of research findings on AMPs that have shown antibacterial activity against vancomycin-resistant and vancomycin-intermediate resistant strains and clinical isolates of S. aureus, discussing their classification and origin, physicochemical and structural characteristics, and possible action mechanisms. This is the first review that includes all peptides that have shown antibacterial activity against VRSA and VISA strains exclusively.  相似文献   

11.
The high infection and mortality rate of methicillin-resistant Staphylococcus aureus (MRSA) necessitates the urgent development of new treatment strategies. Bacteriophages (phages) have several advantages compared to antibiotics for the treatment of multi-drug-resistant bacterial infections, and thus provide a promising alternative to antibiotics. Here, S. aureus phages were isolated from patients and environmental sources. Phages were characterized for stability, morphology and genomic sequence and their bactericidal activity against the biofilm form of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA was investigated. Four S. aureus phages were isolated and tested against 51 MSSA and MRSA clinical isolates and reference strains. The phages had a broad host range of 82–94% individually and of >98% when combined and could significantly reduce the viability of S. aureus biofilms. The phages had a latent period of ≤20 min and burst size of >11 plaque forming units (PFU)/infected cell. Transmission electron microscopy (TEM) identified phages belonging to the family of Myoviridae. Genomic sequencing indicated the lytic nature of all four phages, with no identified resistance or virulence genes. The 4 phages showed a high complementarity with 49/51 strains (96%) sensitive to at least 2/4 phages tested. Furthermore, the frequency of bacteriophage insensitive mutant (BIM) generation was lower when the phages were combined into the phage cocktail APTC-C-SA01 than for bacteria exposed to each of the phages alone. In conclusion, APTC-C-SA01, containing four lytic S. aureus phages has the potential for further development as a treatment against MSSA and MRSA infections.  相似文献   

12.
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.  相似文献   

13.
目的建立快速检测食品中金黄葡萄球菌的核酸探针检测法。方法通过使用吖啶酯标记的特异DNA探针检测金黄葡萄球菌,确定最高和最低探针浓度,验证该方法的特异性及敏感性,并与传统国标法的检测结果进行比较。结果核酸探针法最高探针浓度为2pmol∕50μl,最低探针浓度为0.25pmol∕50μl;该方法特异性良好,检出纯培养菌落最低限约为106cfu∕ml;与国标法检测结果一致性较高。结论核酸探针法可用于食品中金黄葡萄球菌的快速检测。  相似文献   

14.
An emerging therapeutic approach in the treatment of infectious disease is to augment the host response through repurposing of well-tolerated, non-antibiotic, host-directed therapeutics. Earlier retrospective studies identify a positive association between statin use and a decreased risk of death due to sepsis or bacteremia. However, more recent randomized control trials fail to detect a therapeutic benefit in these complex infection settings. It is postulated that unrecognized biases in certain observational studies may have led to an overestimation of benefit and that statin use is instead a marker for health status, wealth, and demographic characteristics which may separately affect death due to infection. What remains unresolved is that in vitro and in vivo evidence reproducibly indicates that statin pharmacology limits infection and augments immunomodulatory responses, suggesting that therapeutic benefits may be attainable in certain infection settings, such as intracellular infection by S. aureus. Carefully considering the biological mechanisms capable of driving the relationship between statins and infections and constructing a methodology to avoid potential biases in observational studies would enable the examination of protective effects against infection and limit the risk of underestimating statin efficacy. Such an approach would rely on the examination of statin use in defined infection settings based on an underlying mode-of-action and pharmacology, where the inhibition of HMG-CoA-reductase at the rate-limiting step in cholesterol biosynthesis diminishes not only cholesterol levels but also isoprenoid intermediates central to host cell invasion by S. aureus. Therapeutic benefit in such settings, if existent, may be of clinical importance.  相似文献   

15.
目的对金黄色葡萄球菌(简称金葡菌)一种新型金属磷酸酶(metallophosphatase,MPP)SA1662进行遗传特征分析及生物学功能鉴定。方法从金葡菌基因组DNA中克隆SA1662基因,通过序列比对和构建进化树分析其遗传特征;构建重组表达质粒,转化大肠埃希菌BL21,IPTG诱导表达,表达的重组蛋白经Ni柱纯化后,测定酶活性。应用同源重组技术构建SA1662基因缺失株,分析SA1662基因缺失对金葡菌生长、万古霉素敏感性、细菌自溶性和细菌生物菌膜形成的影响,探讨SA1662的生物学功能。结果 SA1662蛋白具有MPP类蛋白结构域,并含有特征性金属离子结合位点,与金葡菌和施维茨葡萄球菌中相关蛋白有更近的亲缘关系。该蛋白酶活性依赖于Mg2+和Mn2+,特别是Mg2+。与野生型菌株相比,SA1662基因缺失后,细菌生长速度减慢,万古霉素敏感性、TritonX-100诱导下的细菌自溶性和细菌生物菌膜形成能力均下降。结论 SA1662蛋白为一种新型的金葡菌MPP,在细菌抗逆性中起着重要作用。  相似文献   

16.
金黄色葡萄球菌(Staphylococcus aureus)是目前临床上感染严重的致病细菌之一,随着抗生素的广泛使用,其耐药性及致病性问题日益突出,尤其形成生物膜及持留菌后,更为临床的治疗增加了难度.生物膜加强细菌耐药性,而持留菌是微生物种群中随机形成的细胞休眠体,对抗生素高度耐受.本文对金黄色葡萄球菌生物膜形成原因、...  相似文献   

17.
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.  相似文献   

18.
The adhesion of Staphylococcus aureus to abiotic surfaces is crucial for establishing device-related infections. With a high number of single-cell force spectroscopy measurements with genetically modified S. aureus cells, this study provides insights into the adhesion process of the pathogen to abiotic surfaces of different wettability. Our results show that S. aureus utilizes different cell wall molecules and interaction mechanisms when binding to hydrophobic and hydrophilic surfaces. We found that covalently bound cell wall proteins strongly interact with hydrophobic substrates, while their contribution to the overall adhesion force is smaller on hydrophilic substrates. Teichoic acids promote adhesion to hydrophobic surfaces as well as to hydrophilic surfaces. This, however, is to a lesser extent. An interplay of electrostatic effects of charges and protein composition on bacterial surfaces is predominant on hydrophilic surfaces, while it is overshadowed on hydrophobic surfaces by the influence of the high number of binding proteins. Our results can help to design new models of bacterial adhesion and may be used to interpret the adhesion of other microorganisms with similar surface properties.  相似文献   

19.
Bacterial biofilm formation is a major cause of drug resistance and bacterial persistence; thus, controlling pathogenic biofilms is an important component of strategies targeting infectious bacterial diseases. Cinnamaldehyde (CNMA) has broad-spectrum antimicrobial and antibiofilm activities. In this study, we investigated the antibiofilm effects of ten CNMA derivatives and trans-CNMA against Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus. Among the CNMA analogs tested, 4-nitrocinnamaldehyde (4-nitroCNMA) showed antibacterial and antibiofilm activities against UPEC and S. aureus with minimum inhibitory concentrations (MICs) for cell growth of 100 µg/mL, which were much more active than those of trans-CNMA. 4-NitroCNMA inhibited UPEC swimming motility, and both trans-CNMA and 4-nitroCNMA reduced extracellular polymeric substance production by UPEC. Furthermore, 4-nitroCNMA inhibited the formation of mixed UPEC/S. aureus biofilms. Collectively, our observations indicate that trans-CNMA and 4-nitroCNMA potently inhibit biofilm formation by UPEC and S. aureus. We suggest efforts be made to determine the therapeutic scope of CNMA analogs, as our results suggest CNMA derivatives have potential therapeutic use for biofilm-associated diseases.  相似文献   

20.
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号