首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The numerical index system of color harmony is intended to mark a great number of color pairs, optimally any number of existing color pairs, by a number between 0 and 100. This number expresses the extent to which a color pair is being felt harmonious by the average of people and the level of harmony content it possesses. The experiments described in this article have determined the basic data necessary to create this system. The series of the experiments have been done in two stages. The first stage, in which 24 test objects were presented to the experimental subjects, was carried out twice first in 1988–1990 and again in 2004–2006. Every test set was composed of eight compositions. The number of scores, given to each of the compositions, determined the harmony content of the color pair groups, whose members are formed from the saturated colors of different hues and from the members of the grey scale. In the second stage of the experiment, these data served as references for the experimental subjects. In the second stage, there were 192 tests. In these tests, there were different numbers of compositions each formed of different color pairs. One of the members of these color pairs was the member of the saturated color of the first experiment. The second member was always of different saturation and lightness for each of the compositions, purposefully chosen to match the saturated colors. Based on the experimental scores, we obtained a color harmony surface linked to the intersections with the coordinates in the Coloroid system. The color harmony surfaces and the distances between the related intersections indicate the harmony content of the color pair. The numerical values of these distances are called the color harmony index number of the color pair. These data make the creation of a color harmony indexing system possible, expressing the color harmony content of all possible color pairs, in the color space. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

2.
This study investigates how a holistic color interval, i.e., the nondirectional color difference between a pair of colors in a CIELAB uniform color space, influences perceived color harmony. A set of 1035 test color pairs displayed on a CRT was evaluated for the degree of harmony. These test color pairs consist of pairs combined from among the selected 46 test colors evenly distributed in color space. The subjects were asked to select their three preferred colors from these 46 test colors and then to evaluate the degree of harmony of the test color combinations. The color intervals (ΔE) of each test color combination were calculated and treated as values of an independent variable. In addition, the evaluated degrees of color harmony were considered as values of a dependent variable, in which statistical analysis confirmed the relationship: the degree of harmony is a cubic function of the color interval. Moreover, the plot of this relationship allowed us to identify four color intervals: roughly corresponding to the regions of first ambiguity, similarity, second ambiguity, and contrast in Moon and Spencer's model. However, our results indicated that Moon and Spencer's principles for classifying harmonious/disharmonious regions in terms of the color interval for three color attributes—lightness, chroma and hue—may be inappropriate in predicting perceived color harmony. As for the color intervals between a pair of colors considered as a function of the three attributes, the interval for lightness may have a predominant effect on color harmony, expressed in terms of a cubic relationship. Results of the study further demonstrated that the subject's choice of colors significantly influences perceived color harmony. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 29–39, 2001  相似文献   

3.
We, in 1956 the Department of Architecture at the Budapest University of Technology and Economics, decided to start an extensive color harmony experiment. The experimental work, the collation, and processing of the collected data, lasting 50 years, was completed in 2006. The experiments described in this article are based on earlier experimental results obtained from investigation into the harmony content of hue pairs. We then decided to search for a third hue, which in association with an existing pair, with high‐color harmony, forms a hue triad with high‐harmony content too. The compositions prepared for the experiment were composed in each case of three hues of four identical saturation but different brightness, forming a group of 12 colors. The color content of the compositions covered the color space uniformly. That was the first stage in the experiment, carried out with 60 compositions. In the second stage, we investigated the effect of the saturation content of the colors used in the composition, on the harmony content of the hue triads. For this experiment, we prepared 48 compositions. In these experiments, we applied the method of grading. We concluded that the level of the harmony content of the hue triads depends on the inclination between the hue planes in the Coloroid color space. We also concluded that to every hue, selected for starting point, six well‐definable groups of hues can be ordered from the Coloroid color space, from which color triads with high harmony content, can be selected. It showed conclusively that the saturation level of the individual members of the triads has a significant influence on their harmony content. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

4.
The aim of this study was to investigate the impact of signboard-building color combinations on color harmony and legibility. Two hundred and three participants rated 54 signboard-building color combinations against two scales of color harmony and legibility. In this article, the terms “brick,” “stone,” and “glass” refer to three types of building exteriors used in the experiment (ie, brick masonry, greystone, and curtain walls, respectively). Major findings are as follows: (a) there was a positive linear correlation between color harmony and legibility in all three types of building exteriors, (b) the type of building exterior affected the color harmony and legibility of signboard colors, (c) no hue-related patterns were observed, (d) the effects of chroma differences on color harmony were weak and the effects of chroma differences on legibility were moderate, (e) the effects of lightness differences on color harmony and legibility were strong in brick, but the effects of lightness differences were weak in stone and glass, (f) white color combinations (ie, color pairs including white signboards) turned out to be the most harmonious and legible, and (g) color combinations of light signboards and dark buildings (negative polarity) were rated most harmonious and legible, with the exception of vivid red (positive polarity). The findings of this study provide insight into the characteristics of harmonious and legible colors in the context of signboard design.  相似文献   

5.
Abstract: It is a recognized fact, that the relative surface coverage of the colors has a great influence on the harmony content. It is an open question that, in a composition, what is the optimum ratio between the surface area coverage of the colors, for maximum harmony content of the color pairs, selected for the composition. Various theories on color harmony already tried to answer this question, based on two substantially different principles. One is built on the mechanism of color vision, while the other one founded on statistical test results. The first approach was already proven not valid; but the second one was not proven right either due to the lack of available data. Our experiments aim is to fill this gap by using 324 compositions with different color coverage, to investigate its relation to harmony content. The statistical results were summarized in graphs as well as formulated in mathematical equations. The results show that the prime factor in the measure of harmony content is the relative surface coverage of the highly saturated colors. In most cases however the 50–50% ratio of color coverage leads to maximum harmony content in a composition. © 2013 Wiley Periodicals, Inc. Col Res Appl, 39, 387–398, 2014  相似文献   

6.
In order to develop a computer-based color consultation system, a quantitative evaluation of color harmony for interior images is constructed by using a linguistic-based image scale. Conventionally, color harmony from any engineering perspective has received limited attention, because its successful evaluation requires the development of pleasure-related features. In this study, a new pleasure-related function of color linguistic distribution (CLD) is proposed to quantitatively represent the mental color impression of interior images upon a designed one-dimensional linguistic-based image scale of EXCITING-CALM. Supported by a database that includes fashion trends, the distribution state of CLD is capable of indicating the fashion trends in Taiwan. Also, on the image scale, the grade of color harmony can be measured by its CLD similarity to a reference harmony distribution (RHD). Evaluated results demonstrate that interior design is primarily dominated by (low) saturation and (high) brightness. Also, results based on CIE1976 L*a*b* and CIE1976 L*u*v* color spaces are observed to be better than those based on the hue-dominated method of Moon-Spencer theory in corresponding with human's linguistic similarity, questionnaire-based harmony evaluation, and social trends. Moreover, our solution percentage has been investigated as 72.3%, which is better than those of the Moon-Spencer theory and of the “Law of Inverse Ratios of Areas.” For application purposes, the proposed system is suitable to analyze the mental impression of products from the perspective of the customer. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
8.
Although a number of methods have been developed for image adjustment in various applications, very little work has been done in the context of visual design. In this regard, this article introduces a novel and practical context of image color adjustment and develops a method to adjust an image for harmony with a target color. The experiment with designers revealed that designers made significant changes in hue dimension, and preferred to promote color similarity between the image and the target color. Based on insights from designers, we proposed a method to achieve a harmonious combination of an image and a color element by increasing the hue similarity between them. The result of a user test revealed that our method is particularly useful for images with nonliving objects but less effective for images involving human skin, foods, and so on. It is expected that the practical context investigated in this study can promote a variety of related studies that satisfy the tangible needs of industries and academia.  相似文献   

9.
In 1956, we decided at the Budapest University of Technology and Economics to start a large‐scale experiment on color harmony. The experiments and the processing of the experimental results have been completed in 2006. These experiments, described in this article, form a study of how much are people, participating in the experiment, influenced by their own personal color preference in judging the harmony content of a composition. These experiments have utilized the results of former (1958–1969) color preference experiments and the system of color preference indexes, which were developed by the generalization of those results. Within the framework of these experiments, conducted between 1998 and 2006 there were 24 compositions, shown to the participants, at first one by one, then in pairs and at last in groups of six. They had to assess the harmony content of the compositions and award a score on a scale between 0 and 10. Each composition possessed a specific amount of harmony content according to the rules of color space, based on the Coloroid harmony threshold and verified by former experiments. In these experiments the number of elementary observations were 135 568. The people participating in the experiment were approximately equal number of men and women, from the age group between 10 and 70 years. During processing, by using the color preference numerical indexing system, we compared the results of those experiments with the color preference of a similar age group, by using color compositions, identical to the ones used in the present experiment. We have found that the sensation of the color harmony and its intensity have a strong relation to how the observers relate to colors and also their color preferences. The sensation of color harmony is also influenced by the gender and the age of the observer. © 2009 Wiley Periodicals, Inc. Col Res Appl, 34, 210–224, 2009  相似文献   

10.
An additive approach to predict harmony for three‐colour combinations is proposed in this article. It is hypothesised that a three‐colour combination can be seen as a combination of three colour pairs, each generating a harmonious/disharmonious feeling that can be quantified by a two‐colour harmony model the authors previously derived; the average of these three harmony values can then determine the overall harmony. To establish whether this hypothesis was valid, two psychophysical experiments were conducted in the United Kingdom and the United States. Experiment 1 used 6545 three‐colour wheels as the stimuli, presented individually on a calibrated cathode ray tube display. Under the same viewing conditions, Experiment 2 used 111 interior images as the stimuli. In each experiment, 20 British and 31 American participated as the observers. An additional test was undertaken, with 64 observers taking part, to address the issue of large sample size as encountered in Experiment 1, using 90 colour wheels selected randomly from those used in Experiment 1. The experimental results show close agreement between the observers' response and the harmony value predicted by the proposed method, with a correlation coefficient of 0.71 for the 6545 colour wheels, 0.93 for the 111 interior images and 0.88 for the additional 90 colour wheels. The results support the additive approach as a simple but robust method for predicting harmony in any three‐colour combinations, which may also apply to combinations generated by any number of colours. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

11.
A color selection method that considers subjective principles is becoming more and more necessary in a computer‐based color management system. However, one from an engineering perspective has received limited attention. Previously, we developed an approach to measure the degree of color harmony by the similarity of a pleasure‐related function, CLD (color linguistic distribution), to a RHD (reference harmony distribution) on a one‐dimensional image scale of EXCITING–CALM. Following this approach, a new color selection system is presented in this article by modulating the CLD on the image scale. The procedure used is to encode an inharmonious image as a CLD, then it is modulated and referred to as a RHD, called an imagery specification. Finally, the specified CLD is decoded and reconstructed as a harmonious image in an operated color space. Four types of RHD are compared: three ideal fuzzy sets scaled to extremely calm, quite calm, and slightly calm, and the practical one measured from social trends. For verification, the harmony grade of the decoded image can be measured based on the referred RHD. As a result, four times the harmonic degree of the decoded image is gained than the originally encoded one. For application purposes, the proposed system is suitable for applications related to human subjectivity. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 20–31, 2000  相似文献   

12.
There are few studies on the tricolor design optimization, and the influence of color-area ratio on users' emotion has been ignored. This article aims to achieve multiobjective optimization of tricolor product color design. Two modes of color-area ratio are put forward. Using the proposed method of generating tricolor schemes, 368 tricolor schemes of the representative baby carriage are designed. Through questionnaire survey, color images are screened, and combined with correlation analysis and factor analysis, five perceptual features of color design are determined as “Order,” “Excitement,” “Temperature,” “Color harmony,” and “Users' emotional preference.” From two perspectives of color information processing, radial basis function neural networks are used to construct two emotional evaluation models. By integrating the radial basis function neural networks and a genetic algorithm, this study achieves multiobjective optimization of tricolor product color design for two optimization objectives of color harmony and users' emotional preference. Verification results show that the optimization schemes are significantly better than other schemes. Due to similar product characteristics, children's electric car is utilized to verify the generalization capability of the optimization method proposed in this article. It has been demonstrated that the optimization schemes achieve higher scores than randomly selected color schemes and the actual subjective scores match with the predicted scores computed by the color optimization method.  相似文献   

13.
At the Budapest University of Technology and Economics in 1956, we decided to start large‐scale experiments on color harmony. The experiments and the processing of the experimental data were completed in 2006. The experiments described in this article were based on a long established experience that harmony content of different hue pairs greatly differ from each other. The vast majority of former research activities on the subject of color harmony narrowed down mostly to investigations of saturated color pairs. Color samples of our experiments have been defined within the color space of the Coloroid color system, built on harmony thresholds. The compositions, prepared for the experiments, always consisted of two saturated hues and three low saturation colors of each hue at varying brightness, making it a total of eight colors. Within the framework of the experiments, 48 hues were used. Out of these, each of the 24 was formed into composition pairs with the remaining 48 hues, forming a total of 852 compositions. The paired‐comparison experiments were conducted with the use of the compositions prepared by collage technique. Color samples made of painted paper, between 1980 and 1985, have been repeated between 2002 and 2006 with the same color selection but with computer‐generated pseudorandom patch system compositions. It has been established that harmony content of hue pairs can be expressed by the relative angle of their hue planes in the Coloroid color space. The harmony content of hue pairs exceeds that of other pairs, when this angle is below 10°, between 30° and 40°, between 130° and 140° or near to 180°. Those color pairs of which hue planes are between 60° and 90° to each other in Coloroid color space, exhibit the least harmony content. © 2008 Wiley Periodicals, Inc. Col Res Appl, 34, 33–44, 2009.  相似文献   

14.
In 1956, we came to the decision at the Budapest Technical University to start large scale experiments on color harmony. The experiments and the processing of the experimental results have been completed in 2006, after 50 years of research work. The focal point of the experiments published in the current article has been the practical experience that the span of intervals between saturations and brightnesses of the compositions influence the harmony content of the composition, namely they determine in what extent we perceive the color composition as a harmonic one. Within the framework of experiments compositions have been shown to the participants, first those consisting of color pairs featuring the same hues and saturations but different brightnesses then those consisting of the same hues and brightnesses but different saturations. The method of experiments consisted of comparisons in pairs. There were 780 compositions prepared for the tests. The number of elementary observations during the tests comprised 544 000. It has been established that the variation of harmony content as a function of brightness‐ and saturation‐intervals could be described by a harmony function. It has been established that the variation of harmony content depending on brightness‐intervals is not, but that of depending on saturation intervals is being influenced by the hues of colors of the color pair in the composition. It has been established that in case of compositions with the maximum harmony content the interval of brightnesses of the colors making the color pair in each case gives d30V (d9Y), the interval of saturations gives d30T or is near to it. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 262–270, 2008.  相似文献   

15.
Emotional reactions to red, green, blue, and gray colors in a living room were investigated using a self-report measure. Participants first watched a short video of a 3D model of a living room. Next, they were asked to match the living rooms with facial expressions of six basic emotions. The most stated emotions associated for the red room were disgust and happiness, while the least stated emotions were sadness, fear, anger, and surprise; for the green room, neutral and happiness were the most stated emotions, and anger, surprise, fear, and sadness were the least stated ones; for the blue room, neutral was the most stated emotion, while the least stated emotions were anger and surprise. Neutral, disgust, and sadness were the most stated emotions for the gray room. Gender differences were not found in human emotional reactions to living rooms with different wall colors.  相似文献   

16.
In 1956 we came to the decision at the Budapest Technical University to start large scale experiments on color harmony. The experiments and the processing of the experimental results have been completed in 2006, after 50 years of research work. Within the frame of the experiments 95 000 participants have carried out more than 36 million elementary observations and made elementary decisions. Only certain parts of the experimental results have been published up to now. This article starts publishing the results not published yet. Research work on color harmony carried out during these 50 years can be categorized into seven main groups. The present article deals with the group of experiments testing how much the harmony content of the scales found in different locations in various positions of the axial sections of the Coloroid color system differ from each other. Our experiments were focused to three groups: we examined the variations in the extent of harmony content in the following cases (1) scales carried by lines with different angles to the gray axis, consisting of colors having the same number of harmony intervals between them, (2) scales consisting of colors being parallel to the gray axis, featuring various saturations, having different harmony intervals between them, and (3) scales perpendicular to the gray axis, with different luminosity, having different harmony intervals between each other. The examined color scales contained six colors in each experiment. Experiments were carried out for 24 different axial sections of the Coloroid color system. After 15‐years interruption experiments were repeated; however, with compositions of different appearances. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 477–488, 2007  相似文献   

17.
Color combination criteria are said to entail an affective response in interior design. We investigated the color combination criteria that orient the preference of current observers, after Le Corbusier's 1931 Salubra keyboards. We explored the similarity/contrast in Natural Color System (NCS) hue, blackness, and chromaticness in 312 combinations with four colors, two backgrounds and two accent colors, coming from 43 individual colors, on the walls of a simulated interior of a bedroom from the Swiss Pavilion (Le Corbusier, 1930-1931). Participants were 644 students of architecture and interior design in Western Europe and Near East, who evaluated with a Likert scale their preference for virtual images via an online survey. Results indicate that the most preferred color combinations are those with hues closer in the color wheel, being the similarity between hues in the backgrounds more important than in the accent colors, and with NCS B30G to G as the most preferred hues. Observers preferred color compositions with blackness under 10% and similar blackness between the two background colors, together with a certain blackness contrast between these background colors and the two color accents. Similarly, observers liked color compositions with low chromaticness and low chromaticness difference among the four colors of the composition.  相似文献   

18.
Within the framework of this article the results of two experiments are compared, on the preference and harmony content of neutral colours, carried out 50‐year apart, in 1967 and 2017. The experimental conditions and sample boards, shown to the experimental subjects were identical in both occasions. Result shows that in 2017 the very light and very dark colours have been preferred over other colours, against the findings in1967. At the same time, the experimental subjects found the colour pairs, formed of colours with higher contrast, more harmonic in 2017 than 50‐year earlier in 1967.  相似文献   

19.
During the color design process, it is critical to create diversified color schemes for various consumer groups. It is also important to allow members in a design team to brainstorm for creative ideas. A theory of inspecting natural color elements was proposed in this study based on the CIE 1976 (L*,a*,b*) (CIE 1976) color space and the fuzzy c‐means clustering method. A calculation model was built to determine people's preference for colors based on a serialized system. To determine which factors affect the prediction of consumers' preference for a series of products, a gray relational color preference system was used in combination with gray relational grade so that a designer can obtain reasonable prediction results. The proposed system recommends not only the optimal colors for a product but also the optimal color scheme for a series of products.  相似文献   

20.
Evolving multimodal mobility needs influences established human–product relationships and requires a deeper insight into color preferences for car interiors. Hence, a study was conducted in which 204 members of a web contest created 1,265 designs. After a peer‐evaluation process, 53 most‐appreciated and 34 least‐preferred interior color compositions were identified and compared to identify patterns in color choices. Besides, visual lightweight design by layering of large interior components such as the seat, a modest use of color and patterns accompanied by repetition and the framing of the entire interior to create a feeling of spaciousness were found. Additionally, differences in the type of color between most and least favored color designs were found. Brown and beige occur more frequently among the top‐ than the worst‐rated designs. Larger surfaces are favored in lighter hues and smaller components in darker hues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号