共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated carbon is a promising material that has a broad application prospect. In this work, biomass (tea seed shell) was used to prepare activated carbon with KOH activation (referred to as AC), and nitrogen was doped in activated carbon using melamine as the nitrogen source (referred to as NAC-x, where x is the mass ratio of melamine and activated carbon). The obtained activated biomass carbon (activated bio-carbon) samples were characterized by Brunauer–Emmett–Teller (BET)-specific surface area analysis, ultimate analysis, X-ray photoelectron spectroscopy (XPS) analysis, Raman spectrum analysis, and X-ray diffraction (XRD) patterns. The specific surface areas of activated bio-carbons were 1503.20 m2/g (AC), 1064.54 m2/g (NAC-1), 1187.93 m2/g (NAC-2), 1055.32 m2/g (NAC-3), and 706.22 m2/g (NAC-4), revealing that nitrogen-doping process leads to decrease in specific surface area. XPS analysis revealed that the main nitrogen-containing functional groups were pyrrolic-N and pyridinic-N. The capacity of CO2 capture and electrochemical performance of activated bio-carbon samples were investigated. The CO2 capturing capacity followed this order: AC (3.15 mmol/g) > NAC-2 (2.75 mmol/g) > NAC-1 (2.69 mmol/g) > NAC-3 (2.44 mmol/g) > NAC-4 (1.95 mmol/g) at 298 K at 1 bar, which is consistent with the order of specific surface area. The specific surface area played a dominant role in CO2 capturing capacity. As for supercapacitor, AC-4 showed the highest specific capacitance (168 F/g) at the current density of 0.5 A/g, but NAC-2 showed the best electrochemical performance (89 F/g) at 2 A/g. Nitrogen-containing functional groups and specific surface area both had an important impact on electrochemical performance. In general, NAC-3 and NAC-2 produced excellent electrochemical performance. Compared with NAC-3, less melamine was used to prepare NAC-2; therefore, NAC-2 was considered as the best activated bio-carbon for supercapacitor for 141 F/g (at 0.5 A/g), 108 F/g (at 1 A/g), and 89 F/g (at 2 A/g) in this work. 相似文献
2.
Biomass based carbon has captured more and more attention because it is environmentally friendly and has properties of low cost and ideal sustainability. In this study, three kinds of activated biomass carbons (ie, ABC-700, ABC-800 and ABC-900) were first carbonized through pine sawdust pyrolysis and then activated using KOH under three different activation temperatures (ie, 700°C, 800°C and 900°C). The structure properties of the prepared activated biomass carbons were characterized by N2-adsorption/desorption, SEM, TEM, XRD, Raman, XPS, TG and ultimate analysis. To clarify the activation mechanism, the gas products produced during KOH activation process were measured online with an ETG gas analyzer. The performance of the activated biomass carbons derived from pine sawdust for supercapacitor and CO2 capture was then evaluated. The predominant gas products during the activation process are H2 and CO. It indicates that the porous structure was created by using an enhanced etching reaction between carbon atoms and KOH. An increment of the activation temperature from 700 to 900°C results in the increase of surface area (from 1728.66 to 2330.89 m2/g) and total pore volume (from 0.671 to 1.914 cm3/g). Among the three samples, ABC-900 exhibits the maximal specific capacitance of 175.6 F·g−1 and high energy density of 24.39 Wh·kg−1 at the 0.5 A·g−1. And the ABC-700 shows the maximal CO2 capture capacity of 4.21 mmol/g and high selectivity of CO2 over N2 at 298 K and 1 bar. In addition, ABC-700 also has excellent stability and reproducibility after 15 times adsorption-desorption cycles. The unexceptionable electrochemical performance and adsorption capacity of the biomass-carbons show its broad application prospects in the field of supercapacitors and CO2 capture. 相似文献
3.
用Aspen Plus建立了双流化床气化和燃烧模型,对生物质在双流化床中气化及CaO吸收合成气中的CO2过程进行了模拟研究;探讨不同反应条件:气化温度、蒸汽与生物质的质量配比(S/B)以及CaO循环量与生物质的质量配比(Ca/B)对合成气成分的影响,为该类型工业反应器的研发提供了理论依据.模拟分析结果表明:气化温度低于700℃时,CaO能很好地吸收气化过程中产生的CO2并促进平衡反应向产氢方向进行;在温度为650℃及CaO作用下,S/B在0.6~1.7内对合成气成分的影响不大;CaO的加入能够有效地改善合成气的组成,合成气中氢气浓度能达到95%以上,氢气产量达到52 mol/kg. 相似文献
4.
本文提出以Fe2O3为载氧体、以CaO捕集CO2的生物质化学链气化系统,利用Aspen Plus软件对该系统进行了模拟,以合成气组成(干基)、合成气氢碳比、含碳产物的碳摩尔分布、冷气效率及收率等为系统性能评价指标,重点分析了燃料反应器温度(TFR)、载氧体Fe2O3与生物质碳摩尔比(Fe2O3/C)、水蒸气与生物质碳摩尔比(Steam/C)、CaO与生物质碳摩尔比(CaO/C)等系统参数对固体生物质化学链气化系统的影响。结果表明,在TFR = 825℃、Fe2O3/C = 0.5、Steam/C = 0.71和CaO/C = 0.26条件下,合成气制备系统性能较优,合成气中H2和CO2含量分别为55.2%和15.4%,氢碳比为1.93,冷气效率为78.2%,被CaCO3捕集的生物质碳为18.2%,收率(湿气基)为1.95 Nm3/kgbiomass,其中合成气中H2和CO收率为1.24 Nm3/kgbiomass。 相似文献
5.
本文介绍了低碳发展的理念和实现路径,分析了CCS技术为低碳发展提供了切实可行的技术基础;介绍了燃烧前捕集、富氧燃烧捕集和燃烧后捕集技术,认为富氧燃烧捕集技术综合效益较高,对于发展低碳经济而言或许是一项技术创新的解决方案。 相似文献
6.
本文对CO2捕集和封存技术的现状、前景和可能遇到的挑战进行了论述,指出CO2捕集是煤炭现代化利用的一个重要趋势。同时指出,成本、捕集效率和方式都是影响CO2捕集和封存发展的重要因素,目前一些问题仍需要得到进一步证实。 相似文献
7.
针对燃煤过程排放的CO2的捕集问题,以N-甲基咪唑为主要原料,合成了含—NH2官能团的离子液体1-(1-氨基丙基)-3-甲基咪唑溴盐(即[NH2p-mim] Br),在常温常压下考察了其对CO2的吸收性能和再生后对CO2的吸收负荷,并对[NH2p-mim]Br和[bmim]Br进行了比较实验,研究了哌嗪的加入对[NH2p-mim]Br吸收CO2的影响.结果表明:胺基的引入增加了对CO2的吸收负荷,且合成的离子液体经再生后,仍具有较高的CO2吸收负荷;哌嗪可促进[NH2p-mim]Br吸收CO2的反应;[NH2p-mim]Br对CO2的吸收负荷远大于[bmim]Br,这可能是因为-NH2官能团的存在实现了[NH2p-mim]Br对CO2物理吸收和化学吸收的并存. 相似文献
8.
CO2是主要的温室气体之一,据统计,1965~2011年全球CO2年排放量从117×108t增长到340×108t,46年间增长了近2倍,年均增长率2.35%,累计排放量达1×1012t以上。预计到2030年,全球CO2年排放量将达到427×108t。化学吸收法是目前工业上捕集CO2的主要手段,主要包括Econamine FGSM工艺、HICAP+TM工艺、DXMTM工艺、KM-CDR工艺、Cansolv CO2捕集工艺、西门子捕集工艺、可再生溶剂吸收工艺、Hitachi技术、Praxair技术、两步闪蒸工艺、CESAR工程工艺和Toshiba工艺等,化学吸收法的溶剂主要是有机胺。虽然有机胺化学吸收法是最有效、最常用且较为经济的CO2捕集方法,但由于有机胺水溶液具有一定的挥发性,也会导致对CO2的吸收能力下降、排放的胺对环境产生一定危害、有机胺腐蚀设备以及由此产生的维护问题等。其他工艺还有膜分离工艺、熔融碳酸盐电化学分离工艺、生成CO2水合物、酶基吸附工艺以及离子液体捕集工艺等,但这些工艺均处于实验室研究阶段。 相似文献
9.
Kay Damen Martijn van Troost Andr Faaij Wim Turkenburg 《Progress in Energy and Combustion Science》2007,33(6):580-609
Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is dominated by the impact of CO2 capture, increasing electricity production costs with 10–40% up to 4.5–6.5 €ct/kWh. CO2 transport and storage in depleted gas fields or aquifers typically add another 0.1–1 €ct/kWh for transport distances between 0 and 200 km. The impact of CCS on hydrogen costs is small. Production and supply costs range from circa 8 €/GJ for the minimal infrastructure variant in which hydrogen is delivered to CHP units, up to 20 €/GJ for supply to households. Hydrogen costs for the transport sector are between 14 and 16 €/GJ for advanced large-scale coal gasification units and reformers, and over 20 €/GJ for decentralised membrane reformers. Although the CO2 price required to induce CCS in hydrogen production is low in comparison to most electricity production options, electricity production with CCS generally deserves preference as CO2 mitigation option. Replacing natural gas or gasoline for hydrogen produced with CCS results in mitigation costs over 100 €/t CO2, whereas CO2 in the power sector could be reduced for costs below 60 €/t CO2 avoided. 相似文献
10.
A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO2 capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper. Based on a 660 MW supercritical coal-fired power plant, the thermal performance, emission performance, and economic performance of the proposed scheme are evaluated. In addition, a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system. The results show that when the biomass mass mixing ratio is 15.40% and the CO2 capture rate is 90%, the CO2 emission of the coal-fired power plant can reach zero, indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants. The net thermal efficiency decreases by 10.31%, due to the huge energy consumption of the CO2 capture unit. Besides, the cost of electricity (COE) and the cost of CO2 avoided (COA) of the proposed system are 80.37 $/MWh and 41.63 $/tCO2, respectively. The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO2 to 2.40 GJ/ tCO2, the efficiency penalty is reduced to 8.67%. This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry. 相似文献
11.
Carbon capture and storage from flue gases is the most common method to reduce greenhouse gas emissions. Using a primary amine as the solvent of CO2 capture unit is popular because of its high activity and ability to be used for streams with low concentration and low partial pressure of CO2. Monoethanolamine(MEA) and Diglycolamine(DGA) are the most common kinds of primary amines which have been traditionally used in many natural gas sweetening plants. In this research, the capture plant has been designed for these two solvents at various CO2 concentrations in the feed flue gas. This paper proposes different possible alters to overcome the high energy requirements of capture plant. It also presents the results of technical evaluation of different parameters, in order to design an actual plant with minimum energy requirement. The results of different parameters show that for DGA solvent, there will be an improvement in overall energy usage in the capture plant rather than MEA for some special cases. To gain the practical results, actual stages have been used for absorber and stripper instead of equilibrium stages. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
Antonio Calabr Paolo Deiana Paolo Fiorini Giuseppe Girardi Stefano Stendardo 《Energy》2008,33(6):952-962
Coal use for electricity generation will continue growing in importance. In the present work the optimization of a high efficiency and zero emissions coal-fired plant, which produces both hydrogen and electricity, has been developed. The majority of this paper concerns an integration of gasification unit, which is characterized by coal hydrogasification and carbon dioxide (CO2) separation, with a power island, where a high-hydrogen content syngas is burnt with pure oxygen stream. Another issue is the high temperature CO2 desorption. Because of the elevated temperature heat supply, the regeneration process affects the overall performance of ZECOMIX plant. An advanced steam cycle characterized by a medium pressure steam compressor and expander has been considered for power generation. A preliminary study of different components leads to analyze possible routes for optimization of the whole plant. The plant equipped with a CO2 capture unit could reach efficiency close to 50%. The simulations of a thermodynamic model were carried out using the software ChemCAD.
This study is a part of a larger research project, named ZECOMIX, led by ENEA (Italian Research Agency for New technologies, Energy and Environment), other partners being ANSALDO and different Italian Universities. It is aimed at analyzing an integrated hydrogen and power production plant. 相似文献
13.
14.
温室气体减排已成为炼厂面临的严峻挑战。CO2捕获是具有大规模减排潜力的技术方案,炼厂可在继续使用廉价化石燃料的同时降低排放。目前许多炼厂已在评估从烟道气中捕获CO2的技术,探索经济可行的捕获方案,这些方案主要包括燃烧后捕获、燃烧前捕获和富氧燃烧捕获等。其中,燃烧后捕获技术相对成熟,可对大多数现有装置进行改造,仅需增加简单的后处理设备,缺点是能耗大,CO2浓度较低,难捕获,从胺溶液中释放的CO2达不到碳封存所需的压力;燃烧前捕获方案的优点是CO2浓度较高,压力高,易于回收,降低了压缩成本及负荷,缺点是这种方法主要适用于新装置,因为炼厂现有的气化装置较少,建设投资成本高且需要大量的辅助系统;富氧燃烧捕获方案的优点是烟道气中的CO2浓度非常高,分离容易;缺点是空气分离设备投资很高,冷却的循环烟道气必须保持一定温度。对3种方案评价表明,在CO2总量和浓度最高的排放源进行捕获成本最低,例如当气体中CO2浓度从12%下降到4%时,捕获成本将上升25%以上;燃烧前捕获和富氧燃烧捕获比燃烧后捕获可节约35%~40%的成本。 相似文献
15.
Muslum Demir Tsemre‐Dingel Tessema Ahmed A. Farghaly Emmanuel Nyankson Sushil K. Saraswat Burak Aksoy Timur Islamoglu Maryanne M. Collinson Hani M. El‐Kaderi Ram B. Gupta 《国际能源研究杂志》2018,42(8):2686-2700
The present study reports the economic and sustainable syntheses of functional porous carbons for supercapacitor and CO2 capture applications. Lignin, a byproduct of pulp and paper industry, was successfully converted into a series of heteroatom‐doped porous carbons (LHPCs) through a hydrothermal carbonization followed by a chemical activating treatment. The prepared carbons include in the range of 2.5 to 5.6 wt% nitrogen and 54 wt% oxygen in its structure. All the prepared carbons exhibit micro‐ and mesoporous structures with a high surface area in the range of 1788 to 2957 m2 g?1. As‐prepared LHPCs as an active electrode material and CO2 adsorbents were investigated for supercapacitor and CO2 capture applications. Lignin‐derived heteroatom‐doped porous carbon 850 shows an outstanding gravimetric specific capacitance of 372 F g?1 and excellent cyclic stability over 30,000 cycles in 1 M KOH. Lignin‐derived heteroatom‐doped porous carbon 700 displays a remarkable CO2 capture capacity of up to 4.8 mmol g?1 (1 bar and 298 K). This study illustrates the effective transformation of a sustainable waste product into a highly functional carbon material for energy storage and CO2 separation applications. 相似文献
16.
随着科学技术的发展和环保要求不断提高,控制CO2的排放量已是全球能源和工业界不可回避的课题。详细介绍了CO2捕集系统及其所采用的CO2分离技术,重点介绍了各种CO2分离技术的特点及适用范围,并对工业和能源2个重点行业的CO2捕集现状进行了分析,提出了CO2资源化利用是将来CO2减排的发展方向 相似文献
17.
18.
针对燃煤电站CO2捕集能耗较高的问题,在统筹考虑大规模碳捕集燃煤电站汽水系统、脱碳单元和CO2多级压缩单元的相互影响下,对脱碳单元贫液CO2负载率进行了优化.结果表明:脱碳单元再生能耗随贫液CO2负载率的增大呈先减小后增大的趋势,且在贫液CO2负载率为0.26mol/mol时取得最小值;不同再生压力下,随着贫液CO2负载率的增大,脱碳单元的辅机泵功随之增大;在CO2捕集率保持不变的情况下,CO2压缩功几乎不随贫液CO2负载率的增大而发生变化;大规模碳捕集燃煤电站的供电效率随贫液CO2负载率的增大呈先提高后降低的趋势,在贫液CO2负载率为0.26mol/mol、再生压力为250Pa时取得最优值. 相似文献
19.