首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The methylase METTL3 is the writer enzyme of the N6-methyladenosine (m6A) modification of RNA. Using a structure-based drug discovery approach, we identified a METTL3 inhibitor with potency in a biochemical assay of 280 nM, while its enantiomer is 100 times less active. We observed a dose-dependent reduction in the m6A methylation level of mRNA in several cell lines treated with the inhibitor already after 16 h of treatment, which lasted for at least 6 days. Importantly, the prolonged incubation (up to 6 days) with the METTL3 inhibitor did not alter levels of other RNA modifications (i. e., m1A, m6Am, m7G), suggesting selectivity of the developed compound towards other RNA methyltransferases.  相似文献   

2.
3.
Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3’UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.  相似文献   

4.
The fat mass and obesity-associated protein (FTO), an RNA N6-methyladenosine (m6A) demethylase, is an important regulator of central nervous system development, neuronal signaling and disease. We present here the target-tailored development and biological characterization of small-molecule inhibitors of FTO. The active compounds were identified using high-throughput molecular docking and molecular dynamics screening of the ZINC compound library. In FTO binding and activity-inhibition assays the two best inhibitors demonstrated Kd = 185 nM; IC50 = 1.46 µM (compound 2) and Kd = 337 nM; IC50 = 28.9 µM (compound 3). Importantly, the treatment of mouse midbrain dopaminergic neurons with the compounds promoted cellular survival and rescued them from growth factor deprivation induced apoptosis already at nanomolar concentrations. Moreover, both the best inhibitors demonstrated good blood-brain-barrier penetration in the model system, 31.7% and 30.8%, respectively. The FTO inhibitors demonstrated increased potency as compared to our recently developed ALKBH5 m6A demethylase inhibitors in protecting dopamine neurons. Inhibition of m6A RNA demethylation by small-molecule drugs, as presented here, has therapeutic potential and provides tools for the identification of disease-modifying m6A RNAs in neurogenesis and neuroregeneration. Further refinement of the lead compounds identified in this study can also lead to unprecedented breakthroughs in the treatment of neurodegenerative diseases.  相似文献   

5.
6.
Clostridium perfringens beta2 (CPB2) toxin is one of the main pathogenic toxins produced by Clostridium perfringens, which causes intestinal diseases in animals and humans. The N6-methyladenosine (m6A) modification is the most common reversible modification in eukaryotic disease processes. Methyltransferase-like 3 (METTL3) regulates immunity and inflammatory responses induced by the bacterial infections in animals. However, METTL3′s involvement in CPB2-treated intestinal porcine epithelial cell line-J2 (IPEC-J2) remains unclear. In the current study, we used methylated RNA immunoprecipitation-quantitative polymerase chain reaction, Western blotting and immunofluorescence assay to determine the role of METTL3 in CPB2-exposed IPEC-J2 cells. The findings revealed that m6A and METTL3 levels were increased in CPB2 treated IPEC-J2 cells. Functionally, METTL3 overexpression promoted the release of inflammatory factors, increased cytotoxicity, decreased cell viability and disrupted tight junctions between cells, while the knockdown of METTL3 reversed these results. Furthermore, METTL3 was involved in the inflammatory response of IPEC-J2 cells by activating the TLR2/NF-κB signaling pathway through regulating TLR2 m6A levels. In conclusion, METTL3 overexpression triggered the TLR2/NF-κB signaling pathway and promoted CPB2-induced inflammatory responses in IPEC-J2 cells. These findings may provide a new strategy for the prevention and treatment of diarrhea caused by Clostridium perfringens.  相似文献   

7.
葡萄柚果汁中富含呋喃香豆素类化学成分,这些呋喃香豆素类化合物特别像6,7-DHB及其类似物能抑制药物代谢酶细胞色素P450,以致于提高特定药物口服生物利用率或阻碍致癌物质的活性。综述了近年来发现的呋喃香豆素化合物的类别、活性及合成方面的情况。  相似文献   

8.
N6-methyladenosine (m6A) methylation is the most pervasive and intensively studied mRNA modification, which regulates gene expression in different physiological processes, such as cell proliferation, differentiation, and inflammation. Studies of aberrant m6A in human diseases such as cancer, obesity, infertility, neuronal disorders, immune diseases, and inflammation are rapidly evolving. However, the regulatory mechanism and physiological significance of m6A methylation in psoriasis vulgaris are still poorly understood. In this study, we found that m6A methylation and Methyltransferase-like 3 (METTL3) were both downregulated in psoriatic skin lesions and were negatively correlated with Psoriasis Area and Severity Index (PASI) scores. Inhibiting m6A methylation by knocking down Mettl3 promoted the development of psoriasis and increased its severity in imiquimod-induced psoriasis-like model mice. Our results indicate a critical role of METTL3- mediated m6A methylation in the pathogenesis of psoriasis vulgaris.  相似文献   

9.
目的制备重组人14-3-3zeta亚型单克隆抗体(McAb),并检测14-3-3蛋白在人体组织器官的分布。方法将筛选出分泌抗人14-3-3zeta的杂交瘤细胞注射入BALB/c小鼠腹腔,制备腹水McAb,用辛酸-饱和硫酸铵沉淀法纯化,并鉴定其效价、纯度、浓度、特异性以及与天然抗原的亲和力,再用此单抗检测14-3-3蛋白在人体组织器官的分布。结果腹水及纯化后的单克隆抗体的效价分别为1∶107和1∶106。纯化后的纯度达97%,浓度为5mg/ml,能识别天然的人14-3-3蛋白,并能有效地识别兔和鼠脑组织的14-3-3蛋白。在人脑、肾、肺、肝、胃、卵巢、乳腺、结肠、胰腺等组织器官中,均检出14-3-3蛋白。结论已成功制备出重组人14-3-3zeta亚型单克隆抗体,并应用于实际检测,为研究14-3-3蛋白在机体生理和病理情况下的作用机制奠定了基础。  相似文献   

10.
Aldehyde dehydrogenase 3A1 (ALDH3A1) plays an important role in many cellular oxidative processes, including cancer chemoresistance, by metabolizing activated forms of oxazaphosphorine drugs such as cyclophosphamide (CP) and its analogues, such as mafosfamide (MF), ifosfamide (IFM), and 4‐hydroperoxycyclophosphamide (4‐HPCP). Compounds that can selectively target ALDH3A1 could permit delineation of its roles in these processes and could restore chemosensitivity in cancer cells that express this isoenzyme. Here we report the detailed kinetic and structural characterization of an ALDH3A1‐selective inhibitor, CB29, previously identified in a high‐throughput screen. Kinetic and crystallographic studies demonstrate that CB29 binds within the aldehyde substrate‐binding site of ALDH3A1. Cellular proliferation of ALDH3A1‐expressing lung adenocarcinoma (A549) and glioblastoma (SF767) cell lines, as well as ALDH3A1 non‐expressing lung fibroblast (CCD‐13Lu) cells, is unaffected by treatment with CB29 and its analogues alone. However, sensitivity toward the anti‐proliferative effects of mafosfamide is enhanced by treatment with CB29 and its analogue in the tumor cells. In contrast, the sensitivity of CCD‐13Lu cells toward mafosfamide was unaffected by the addition of these same compounds. CB29 is chemically distinct from the previously reported small‐molecule inhibitors of ALDH isoenzymes and does not inhibit ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, or ALDH2 isoenzymes at concentrations up to 250 μM . Thus, CB29 is a novel small molecule inhibitor of ALDH3A1, which might be useful as a chemical tool to delineate the role of ALDH3A1 in numerous metabolic pathways, including sensitizing ALDH3A1‐positive cancer cells to oxazaphosphorines.  相似文献   

11.
A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125–250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.  相似文献   

12.
3CLpro of SARS-CoV-2 is a promising target for developing anti-COVID19 agents. In order to evaluate the catalytic activity of 3CLpros according to the presence or absence of the dimerization domain, two forms had been purified and tested. Enzyme kinetic studies with a FRET method revealed that the catalytic domain alone presents enzymatic activity, despite it being approximately 8.6 times less than that in the full domain. The catalytic domain was crystallized and its X-ray crystal structure has been determined to 2.3 Å resolution. There are four protomers in the asymmetric unit. Intriguingly, they were packed as a dimer though the dimerization domain was absent. The RMSD of superimposed two catalytic domains was 0.190 for 182 Cα atoms. A part of the long hinge loop (LH-loop) from Gln189 to Asp197 was not built in the model due to its flexibility. The crystal structure indicates that the decreased proteolytic activity of the catalytic domain was due to the incomplete construction of the substrate binding part built by the LH-loop. A structural survey with other 3CLpros showed that SARS-CoV families do not have interactions between DM-loop due to the conformational difference at the last turn of helix α7 compared with others. Therefore, we can conclude that the monomeric form contains nascent enzyme activity and that its efficiency increases by dimerization. This new insight may contribute to understanding the behavior of SARS-CoV-2 3CLpro and thus be useful in developing anti-COVID-19 agents.  相似文献   

13.
肠道病毒71型(Enterovirus type 71,EV71)感染是引起神经系统紊乱、肺水肿、肺出血等严重疾病的主要原因。非结构蛋白2A、3C、3D是EV71在宿主细胞内完成复制和存活的基础,具有不同于肠道病毒其他成员的结构和作用机制。2A和3C蛋白可抑制宿主细胞蛋白的表达,从而促进细胞凋亡,3C蛋白还可抑制天然免疫,3D蛋白与病毒的耐高温和高度变异适应性有关。一些小分子物质可在病毒入侵的不同阶段抑制EV71感染。本文就2A、3C、3D蛋白在EV71复制过程中的结构与功能特点以及一些小分子物质在病毒复制中的抑制作用作一综述。  相似文献   

14.
重组日本血吸虫14-3-3蛋白的纯化和鉴定   总被引:1,自引:0,他引:1  
目的观察两次切胶、两次电洗脱的方法纯化重组日本血吸虫14-3-3(Sj14-3-3)蛋白的效果。方法采用两次切胶、两次电洗脱的方法(与经典的切胶、电洗脱有所不同),纯化Sj14-3-3蛋白,并与柱层析纯化方法进行比较。结果采用两次切胶、两次电洗脱方法纯化的目的蛋白条带单一,浓度达3mg/ml,而柱层析法纯化的蛋白浓度仅为1mg/ml。Western blot证实纯化目的蛋白的特异性。结论两次切胶、两次电洗脱法可获得高纯度、高特异性的目的蛋白,不失为一种经济有效的蛋白纯化方法。  相似文献   

15.
We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.  相似文献   

16.
Cytochrome P450 3A7 (CYP3A7) is a fetal/neonatal liver enzyme that participates in estriol synthesis, clearance of all-trans retinoic acid, and xenobiotic metabolism. Compared to the closely related major drug-metabolizing enzyme in adult liver, CYP3A4, the ligand binding and catalytic capacity of CYP3A7 are substantially reduced. To better understand the structural basis for these functional differences, the 2.15 Å crystal structure of CYP3A7 has been solved. Comparative analysis of CYP3A enzymes shows that decreased structural plasticity rather than the active site microenvironment defines the ligand binding ability of CYP3A7. In particular, a rotameric switch in the gatekeeping amino acid F304 triggers local and long-range rearrangements that transmit to the F-G fragment and alter its interactions with the I-E-D-helical core, resulting in a more rigid structure. Elongation of the β34 strands, H-bond linkage in the substrate channel, and steric constraints in the C-terminal loop further increase the active site rigidity and limit conformational ensemble. Collectively, these structural distinctions lower protein plasticity and change the heme environment, which, in turn, could impede the spin-state transition essential for optimal reactivity and oxidation of substrates.  相似文献   

17.
Human galectin-3 (hGal-3) is involved in a variety of biological processes and is implicated in wide range of diseases. As a result, targeting hGal-3 for clinical applications has become an intense area of research. As a step towards the development of novel hGal-3 inhibitors, we describe a study of the binding of two Se-containing hGal-3 inhibitors, specifically that of di(β-D-galactopyranosyl)selenide (SeDG), in which two galactose rings are linked by one Se atom and a di(β-D-galactopyranosyl)diselenide (DSeDG) analogue with a diseleno bond between the two sugar units. The binding affinities of these derivatives to hGal-3 were determined by 15N-1H HSQC NMR spectroscopy and fluorescence anisotropy titrations in solution, indicating a slight decrease in the strength of interaction for SeDG compared to thiodigalactoside (TDG), a well-known inhibitor of hGal-3, while DSeDG displayed a much weaker interaction strength. NMR and FA measurements showed that both seleno derivatives bind to the canonical S face site of hGal-3 and stack against the conserved W181 residue also confirmed by X-ray crystallography, revealing canonical properties of the interaction. The interaction with DSeDG revealed two distinct binding modes in the crystal structure which are in fast exchange on the NMR time scale in solution, explaining a weaker interaction with hGal-3 than SeDG. Using molecular dynamics simulations, we have found that energetic contributions to the binding enthalpies mainly differ in the electrostatic interactions and in polar solvation terms and are responsible for weaker binding of DSeDG compared to SeDG. Selenium-containing carbohydrate inhibitors of hGal-3 showing canonical binding modes offer the potential of becoming novel hydrolytically stable scaffolds for a new class of hGal-3 inhibitors.  相似文献   

18.
Aurora kinases were recently identified as a potential target in anticancer therapy and, amongst their available inhibitors, Tozasertib (VX-680) and Danusertib (PHA-739358) have been indicated as possible substrates of human flavin-containing monooxygenase 3 (hFMO3). Here we report the in vitro rate of oxidation of these drugs by wild-type hFMO3 and its polymorphic variant V257M. The conversion of Tozasertib and Danusertib to their corresponding metabolites, identified by LC-MS, by the purified wild-type and V257M hFMO3 show significant differences. In the case of Tozasertib, the V257M variant shows a catalytic efficiency, expressed as kcat/Km, similar to the wild-type: 0.39 ± 0.06 min−1μM−1 for V257M compared to 0.33 ± 0.04 min−1μM−1 for the wild type. On the other hand, in the case of Danusertib, V257M shows a 3.4× decrease in catalytic efficiency with kcat/Km values of 0.05 ± 0.01 min−1μM−1 for V257M and 0.17 ± 0.03 min−1μM−1 for the wild type. These data reveal how a simple V257M substitution ascribed to a single nucleotide polymorphism affects the N-oxidation of relevant anticancer drugs, with important outcome in their therapeutic effects. These findings demonstrate that codon 257 is important for activity of the hFMO3 gene and the codon change V to M has an effect on the catalytic efficiency of this enzyme.  相似文献   

19.
The critical initial steps in insulin action include phosphorylation of adapter proteins and activation of phosphatidylinositol 3-kinase (PI3K). One of important components in this process is a protein called Akt/protein kinase B (PKB). The work of numerous different researchers indicates a role of PKB in regulating insulin-stimulated glucose uptake. The crucial role of lipid second messengers in PKB activation has been dissected through the use of the PI3K-specific inhibitors wortmannin and LY294002. Receptor-activated PI3K synthesizes the lipid second messenger PtdIns[3,4,5]-trisphosphate, leading to the recruitment of PKB to the membrane. Membrane attachment of PKB is mediated by its pleckstrin homology domain binding to PtdIns[3,4,5]-trisphosphate or PtdIns[3,4]-bisphosphate with high affinity. Activation of PKB alpha is then achieved at the plasma membrane by phosphorylation of Thr308 in the activation-loop of the kinase domain and Ser473 in the carboxy-terminal regulatory region, respectively. 3-Phosphoinositide-dependent protein kinase-1 (PDK1) is responsible for T308 phosphorylation. The usage of specific inhibitors and natural compound has significantly contributed to investigate the molecular mechanism of PI3K/PDK1/PKB signaling pathway, leading to the putative therapeutics benefits of patients. This review focuses on the contribution of natural inhibitor or compound in our understanding of the mechanism by which insulin induces, especially in PI3K/PDK1/PKB signaling.  相似文献   

20.
Ergolines were recently identified as a novel class of H3 receptor (H3R) inverse agonists. Although their optimization led to drug candidates with encouraging properties for the treatment of narcolepsy, brain penetration remained low. To overcome this issue, ergoline 1 ((6aR,9R,10aR)‐4‐(2‐(dimethylamino)ethyl)‐N‐phenyl‐9‐(pyrrolidine‐1‐carbonyl)‐6,6a,8,9,10,10a‐hexahydroindolo[4,3‐fg]quinoline‐7(4H)‐carboxamide)) was transformed into a series of indole derivatives with high H3R affinity. These new molecules were profiled by simultaneous determination of their brain receptor occupancy (RO) levels and pharmacodynamic (PD) effects in mice. These efforts culminated in the discovery of 15 m ((R)‐1‐isopropyl‐5‐(1‐(2‐(2‐methylpyrrolidin‐1‐yl)ethyl)‐1H‐indol‐4‐yl)pyridin‐2(1H)‐one), which has an ideal profile showing a strong correlation of PD effects with RO, and no measurable safety liabilities. Its desirably short duration of action was confirmed by electroencephalography (EEG) measurements in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号