首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficient implementation of solar systems in buildings depends on the storage of energy yielded, as it can both increase the solar system's autonomy and make it a feasible solution for zero energy buildings, and make storage vessels more compact, reducing precious space requirements. This is of particular important in places with reduced time of sunshine, where solar systems are less effective, because of the deviation between solar radiation and the demand. The traditional storage options use water, which is practical, safe and low‐cost, especially when the storage requirements are small. However, when larger storage is needed, limits concerning the use of water exist, mainly due to the need for larger installation space and the increased thermal losses. The use of phase change materials (PCM) for thermal energy storage seems an upcoming technology. The main idea is the substitution of water with PCM, which feature larger specific energy storage capacity compared to other conventional materials. In the context of the specific paper, a combined solar thermal system used for the preparation of domestic hot water (DHW) and space heating (Solar Combi System) with two different types of storage is studied, for two Greek cities. The aim is to find out which is the most efficient way of storing energy with respect to the autonomy of the system, for a solar combi system. This is being achieved by determining the comparative autonomy of PCM and water storage system for various climates. It was proven that using PCM is advantageous, as it can extend the autonomy duration of the solar system for 2 to 8 hours, depending on the season and the climatic conditions. However, it was also seen that in solar combi systems used throughout the whole year, PCM are inefficient during summer period.  相似文献   

2.
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.  相似文献   

3.
Energy storage is one of the key technologies for energy conservation and therefore is of great practical importance. One of its main advantages is that it is best suited for solar thermal applications. This study deals with a comprehensive discussion of the evaluation and the selection of sensible and latent heat storage technologies, systems and applications in the field of solar energy. Several issues relating to energy storage are examined from the current perspective. In addition, some criteria, techniques, recommendations, checklists on the selection, implementation and operation of energy storage systems are provided for the use of energy engineers, scientists and policy makers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Because of the unstable and intermittent nature of solar energy availability, a thermal energy storage system is required to integrate with the collectors to store thermal energy and retrieve it whenever it is required. Thermal energy storage not only eliminates the discrepancy between energy supply and demand but also increases the performance and reliability of energy systems and plays a crucial role in energy conservation. Under this paper, different thermal energy storage methods, heat transfer enhancement techniques, storage materials, heat transfer fluids, and geometrical configurations are discussed. A comparative assessment of various thermal energy storage methods is also presented. Sensible heat storage involves storing thermal energy within the storage medium by increasing temperature without undergoing any phase transformation, whereas latent heat storage involves storing thermal energy within the material during the transition phase. Combined thermal energy storage is the novel approach to store thermal energy by combining both sensible and latent storage. Based on the literature review, it was found that most of the researchers carried out their work on sensible and latent storage systems with the different storage media and heat transfer fluids. Limited work on a combined sensible-latent heat thermal energy storage system with different storage materials and heat transfer fluids was carried out so far. Further, combined sensible and latent heat storage systems are reported to have a promising approach, as it reduces the cost and increases the energy storage with a stabilized outflow of temperature from the system. The studies discussed and presented in this paper may be helpful to carry out further research in this area.  相似文献   

5.
The drying needs of agricultural, industrial process heat requirements and for space heating, solar energy is one of the prime sources which is renewable and pollution free. As the solar energy is inconsistent and nature dependent, more often there is a mismatch between the solar thermal energy availability and requirement. This drawback could be addressed to an extent with the help of thermal energy storage systems combined with solar air heaters. This review article focuses on solar air heaters with integrated and separate thermal energy storage systems as well as greenhouses with thermal storage units. A comprehensive study was carried out in solar thermal storage units consisting of sensible heat storage materials and latent heat storage materials. As the phase change heat storage materials offer many advantages over the sensible heat storage materials, the researchers are more interested in this system. The charging and discharging characteristics of thermal storage materials with various operational parameters have been reported. All the possible solar air heater applications with storage units have also been discussed.  相似文献   

6.
高温相变蓄热的研究进展   总被引:5,自引:0,他引:5  
从如下两个方面总结了高温相变蓄热的研究现状:①在高温相变材料(PCM)方面,重点介绍了高温相变材料的一些重要性能及其测量,高温相变材料的封装,高温复合相变材料及高温相变材料的应用;②在传热分析方面,主要介绍了相变过程的数值模拟和相变蓄热系统(LTES)的热力学优化。  相似文献   

7.
为克服太阳能间断性和不稳定性的缺点进而实现太阳能集热与采暖的能量供需调节和全天候连续供热,提出了基于相变储热的太阳能多模式采暖方法(太阳能集热直接采暖、太阳能集热采暖+相变储热、太阳能相变储热采暖),并在西藏林芝市某建筑搭建了太阳能与相变储热相结合的采暖系统,该系统可根据太阳能集热温度和外界供热需求实现太阳能多模式采暖的自动控制和自动运行。实验研究表明:在西藏地区采用真空管太阳能集热器可以和中低温相变储热器很好地结合,白天储热器在储热过程中平均储热功率为10.63 kW,储热量达到92.67 kW·h,相变平台明显;晚上储热器在放热过程中供热量达85.23 kW·h,放热功率和放热温度平稳,储放热效率达92%,其储热密度是传统水箱的3.6倍,可连续供热时间长达10 h,从而实现了基于相变储热的太阳能全天候连续供热,相关研究结果对我国西藏地区实施太阳能采暖具有一定的指导作用。  相似文献   

8.
基于列管式换热器具有传热面积大、结构紧凑、操作弹性大等优点,使其在相变储能领域具有广阔的应用前景。本文建立一种新型列管式相变蓄热器模型,在不考虑自然对流的情况下,利用Fluent软件对相变蓄热器进行二维储热过程的数值模拟。本文主要研究斯蒂芬数、雷诺数、列管排列方式、肋片数以及相变材料的导热系数对熔化过程的影响,并对熔化过程中固液分界面的移动规律进行了分析。模拟结果表明,内肋片强化换热效果明显,特别是对应用低导热系数相变材料[导热系数小于1 W/(m·K)]的列管式蓄热器,相对于无肋片结构,加入肋片(Nfn=2)可缩短熔化时间52.6%。  相似文献   

9.
Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant. In this paper regeneration and energy storage characteristics were studied theoretically and experimentally. Two criterion equations for heat and mass transfer in the regeneration process were obtained. The main factors that influence the regeneration process were analyzed. A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed. Translated from Acta Energlae Solaris Sinica, 2006, 27(1): 49–54 [译自: 太阳能学报]  相似文献   

10.
Cascaded latent heat storage for parabolic trough solar power plants   总被引:6,自引:0,他引:6  
The current revival of solar thermal electricity generating systems (SEGS) unveils the still existing need of economic thermal energy storages (TES) for the temperature range from 250 °C to 500 °C. The TES-benchmark for parabolic trough power plants is the direct two tank storage, as it was used at the SEGS I plant near Barstow (USA). With the introduction of expensive synthetic heat transfer oil, capable to increase the operating temperature from former 300 °C up to 400 °C, the direct storage technology became uneconomical. Cascaded latent heat storages (CLHS) are one possible TES alternative, which are marked by a minimum of necessary storage material. The use of a cascade of multiple phase change materials (PCM) shall ensure the optimal utilization of the storage material.This paper reports experimental and numerical results from the investigation of cascaded latent heat storages with alkali nitrate salts like NaNO3, KNO3 and others more. The experiments were conducted with vertical shell and tube type heat exchanger devices under realistic operation parameters. The experimental results were used for a numerical model to simulate different CLHS configurations. Dymola/Modelica was used to conduct the simulation. The outcome of this work shows on the one hand, that the design of CLHS for this temperature range is more complex than for the temperature range up to 100 °C. And on the other hand, the low heat conductivity of available PCM is an obstacle which must be overcome to make full use of this promising storage technology.  相似文献   

11.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

13.
电热锅炉蓄热在空调采暖系统中的应用   总被引:2,自引:0,他引:2  
介绍了电热锅炉蓄热的意义、系统形式及原理,在实例中对系统设计提出了新思路,并介绍了电热锅炉及蓄热槽的选型。  相似文献   

14.
Latent heat storage (LHS) using phase change materials is quite attractive for utilization of the exergy of solar energy and industrial exhaust heat because of its high‐heat storage capacity, heat storage and supply at constant temperature, and repeatable utilization without degradation. In this article, general LHS technology is outlined, and then recent advances in the uses of LHS for high‐temperature applications (over 100 °C) are discussed, with respect to each type of phase change material (e.g., sugar alcohol, molten salt, and alloy). The prospects of future LHS systems are discussed from a principle of exergy recuperation. In addition, the technologies to minimize exergy loss in the future LHS system are discussed on the basis of the thermodynamic analysis by ‘thermodynamic compass’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Designing a cost-effective phase change thermal storage system involves two challenging aspects: one is to select a suitable storage material and the other is to increase the heat transfer between the storage material and the heat transfer fluid as the performance of the system is limited by the poor thermal conductivity of the latent heat storage material. When used for storing energy in concentrated solar thermal power plants, the solar field operation temperature will determine the PCM melting temperature selection. This paper reviews concentrated solar thermal power plants that are currently operating and under construction. It also reviews phase change materials with melting temperatures above 300 °C, which potentially can be used as energy storage media in these plants. In addition, various techniques employed to enhance the thermal performance of high temperature phase change thermal storage systems have been reviewed and discussed. This review aims to provide the necessary information for further research in the development of cost-effective high temperature phase change thermal storage systems.  相似文献   

17.
Latent heat storage systems especially those employing organic materials have been reported to exhibit a rather slow thermal response. This is mainly due to the relatively low thermal conductivities of organic latent heat materials. This paper reports experiments carried out to investigate methods of enhancing the thermal response of paraffin wax heat storage tubes by incorporation of aluminium thermal conductivity promoters of various designs into the body of the wax. Heating and cooling runs were carried out and phase change times determined. It was found that the phase change time reduced significantly by orders of up to 2·2 in energy storage (heating) and 4·2 in energy recovery (cooling). Internal fins performed much better than the star matrices and expanded aluminium performed better than promoters made from aluminium sheet metal in both storage and recovery of heat. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
为冷却光伏组件,用定型相变材料填充管板式PV/T集热器,并以无集热器组件和保温材料填充的集热器为参照组,进行了工质(水)温升及对组件冷却效果的试验。试验结果表明:采用相变材料填充的相变蓄热式集热器能明显降低组件温度,并提高了热能利用率,其冷却效果和工质温升均优于保温材料填充式集热器;在流量为30 L/h的开式水冷条件下,相变材料填充式集热器工质(水)的平均温升为5.6℃,平均获得热能702k J/h,组件温度平均降低了6.8℃,理论光电转换效率提高了3.4%;使用相变蓄热式集热器的组件温度变化约滞后于太阳辐射变化2 h,最低效率时刻避开了辐射值最大时刻,全天效率得到提高。  相似文献   

19.
Latent heat thermal energy storage (LHTES) problems include a lot of boundary conditions that could not be solved by exact solution, so new approaches to solving such problems could revolutionize the advanced energy storage devices. This paper focuses on reformulating the generalized differential quadrature method (GDQM) for a one-dimensional solidification/melting Stefan problem as a fundamental LHTES problem and solves some practical cases. Convergence and comparisons demonstrate that the proposed approach is sufficiently reliable. By checking the accuracy of the proposed approach for the LHTES problem (where Stefan number is below 0.2), it was demonstrated that for all Stefan numbers, the maximum error is less than 3.81% for temperatures. As the usual range of thermal energy storages, for Stefan numbers up to 0.2 the solution yields errors less than 0.2%. Then, the proposed approach is very ideal for such applications. In comparison, GDQM has a more accurate response than an integral solution for Stefan numbers less than 0.2. When this priority of GDQM comes with its low computational cost, it would undoubtedly be preferable.  相似文献   

20.
This work reports the synthesis and characterisation of a core-shell n-octacosane@silica nanoencapsulated phase-change material obtained via interfacial hydrolysis and polycondensation of tetraethyl orthosilicate in miniemulsion. Silica has been used as the encapsulating material because of its thermal advantages relative to synthesised polymers. The material presents excellent heat storage potential, with a measured melting latent heat varying between 57.1 and 89.0 kJ kg−1 (melting point between 58.2 ° C and 59.9 ° C) and a small particle size (between 565 and 227 nm). Degradation of the n-octacosane core starts between 150°C and 180°C. Also, the use of silica as shell material gives way to a heat conductivity of 0.796 W m−1 K−1 (greater than that of nanoencapsulated materials with polymeric shell). Charge/discharge cycles have been successfully simulated at low pressure to prove the suitability of the nanopowder as phase-change material. Further research will be carried out in the future regarding the use of the synthesised material in thermal applications involving nanofluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号