首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) architectures have revealed fascinating characteristics such as direct band gap, strong light absorption, and novel electrochemical properties, which make them promising materials for photovoltaic applications. The review focuses on (1) the study of electrochemical and photovoltaic properties of TMDCs thereby using them as counter electrodes (CEs) in dye‐sensitized solar cells (DSSCs) and (2) analyzing the light absorption and charge transport performance of TMDCs heterostructures with different 3D materials. We have further investigated different materials in combination with TMDCs such as reduced graphene oxide nanocomposite, graphene flakes, and molybdenum as CEs in DSSCs. Conventionally, platinum (Pt) is used as a CE material for DSSCs that displays excellent catalytic activity and high electrical conductivity but due to the high cost and scarcity of Pt limits the large‐scale production. Therefore, the excellent electrochemical properties and cost‐effectiveness of TMDCs make them promising contender to replace Pt as CEs in DSSCs. Additionally, the photovoltaic properties of TMDCs and their heterostructures with various materials such as silicon, gallium arsenide, indium phosphate, tungsten disulfide, boron nitride, and organic polymers are reviewed. TMDCs are also investigated as hole transport layer (HTL) and electron transport layer (ETL) with various organic polymers such as P3HT, PCBM, PEDOT:PSS, PTB7, and spiro‐OmeTAD for organic and perovskite‐based solar cells (SCs). The utilization of TMDCs as CEs and photoabsorbers enhances the power conversion efficiency (PCE) to generate cost‐effective and high performance SC devices that can be exploit for future technological applications.  相似文献   

2.
Hydrogen production through photoelectrochemical (PEC) water-splitting process has drawn significant research attention because it is a promising clean source of energy for improving earth climate in the future. Two-dimensional (2D) graphene and transition metal dichalcogenides (TMDCs), as the core of the system, have become versatile materials for the development of photocatalyst due to their distinct optical, electrical, thermal and mechanical properties. TMDCs have received significant consideration because of low-cost and earth-abundant catalysts that can replace noble metals, such as Pt. Therefore, comprehensive discussions on the structure and properties of 2D graphene and layered TMDCs materials are presented. We also gather and review various fabrication methods for TMDCs-based and graphene-TMDCs-based photocatalysts that can affect the PEC performance and hydrogen evolution. The inherent limitations and several future trends on 2D graphene and layered TMDCs-based photocatalyst for PEC water-splitting application are also discussed.  相似文献   

3.
Emerging two-dimensional (2D) materials, such as graphene, transition metal disulfide compounds (TMDCs), MXenes, layer double hydroxides (LDHs), black phosphorus (BP) and hexagonal boron nitride (h-BN), play an important role in speeding up hydrogen evolution reaction (HER) due to its large specific surface area as well as function of loading and efficient support. However, as an electrocatalyst, pure 2D materials cannot meet HER needs caused by their monotonous performance. Therefore, some nanoparticles are used to load and tune the 2D materials to develop efficient and inexpensive catalysts. Herein, we conduct a thorough analysis for materials based on heteroatoms, especially transition metal atoms and non-metal atoms (N, P, S, etc.) doped with graphene, TMDCs, MXenes, LDHs, BP and h-BN. It can be found that doping or coupling between 2D materials will affect the electronic structure, energy band, active area, conductivity and stability of the catalyst, which will induct a huge change in the catalytic performance. This review reveals the relationship between active centers, H2O adsorption and chemical reaction processes. It also analyzes and summarizes the design principles and performance improvement mechanisms of hybrid catalysts. These discussions can provide references for other researchers to develop derivatives of related catalysts.  相似文献   

4.
Stand-alone graphene-based films were prepared from graphene oxide (GO) nanoplatelets and their use as counter-electrodes (CEs) in dye-sensitized solar cells (DSCs) was investigated. The graphene-based CEs were produced by spray deposition of GO and chemically reduced GO, followed by thermal annealing under an inert atmosphere. These GO-based CEs were shown to have similar transparency as a reference CE made of Pt. Consistent with impedance data from symmetrical half-cells, DSCs assembled with such GO-based CEs exhibited relative efficiencies of ca. 75% comparatively to the reference Pt CE. The possibility of obtaining transparent (transmittance higher than 80%) and reasonable catalytic films for DSCs (energy conversion efficiency of 2.64%) from GO nanoplatelets was demonstrated. The need for reduction of the graphene oxide nanoplatelets prior to deposition was not observed, allowing for a simplified CE manufacturing process. However, further work is still needed to equal or surpass the performance of Pt CEs.  相似文献   

5.
The use of graphene to bridge TiO2 particles in the photoanode of dye‐sensitized solar cell for reduced electrical resistance has been investigated. The difficulty in dispersing graphene in TiO2 paste was overcome by first dispersing graphene oxide (GO) into the TiO2 paste. The GO was then reduced to graphene after the sintering of TiO2. This is shown through transmission electron microscopy and X‐ray photoelectron spectroscopy analysis. Cell performance was evaluated using a solar simulator, incident photon to electron conversion efficiency, intensity modulated photocurrent/photovoltage spectroscopy under blue light, and electrochemical impedance spectroscopy. Depending on the amount of graphene in the photoanode, the cell performance was enhanced to different degrees. A maximum increase of 11.4% in the cell efficiency has been obtained. In particular, the inclusion of graphene has reduced the electron diffusion time by as much as 23.4%, i.e. from 4.74 to 3.63 ms and increased the electron lifetime by as much as 42.3%, i.e. from 19.58 to 27.85 ms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The most frequently used counter electrode (CE) in dye‐sensitized solar cells (DSSCs) is platinum on fluorine‐doped tin oxide glass. This electrode has excellent electrical conductivity, chemical stability, and high electrocatalytic affinity for the reduction of triiodide. However, the high cost of metallic platinum and the poor electrochemical stability pose a major drawback in the commercial production. This has necessitated a search for a non‐precious metal and metal‐free electrocatalyst that demonstrates better catalytic activity and longer electrochemical stability for practical use in DSSCs. Graphene has been at the centre of attention due to its excellent optoelectronic properties. However, a defect‐free graphene sheet is not suitable as a CE in DSSCs, because of its neutral polarity which often restricts efficient charge transfer at the graphene/liquid interface, irrespective of the high in‐plane charge mobility. Hence, heteroatom‐doped graphene‐based CEs are being developed with the aim to balance electrical conductivity for efficient charge transfer and charge polarization for enhanced reduction activity of redox couples simultaneously. The elements commonly used in chemical doping of graphene are nitrogen, oxygen, boron, sulfur, and phosphorus. Halogens have also recently shown great promise. It has been demonstrated that edge‐selective heteroatom‐doping of graphene imparts both efficient in‐plane charge transfers and polarity, thereby enhancing electrocatalytic activity. Thus, heteroatom‐doped graphene serves as a good material to replace conventional electrodes and enhance power conversion efficiency in DSSCs. The focus is to reduce the cost of DSSCs. This review explores the performance of DSSCs, factors that influence the power conversion efficiency, and various physicochemical properties of graphene. It further outlines current progress on the synthetic approaches for chemical doping (substitutional and surface transfer doping) of graphene and graphene oxide with different heteroatoms in order to fine‐tune the electronic properties. The use of heteroatom‐doped graphene as a CE in DSSCs and how it improves the photovoltaic performance of cells is discussed.  相似文献   

7.
In this study, a novel, highly efficient, and magnetically responsive demulsifier, namely, Fe3O4@hyperbranched polyamidoamine‐graphene oxide (MKh‐GO), was synthesized. First, Fe3O4 was synthesized, and Fe3O4 was wrapped in hyperbranched polyamidoamine (h‐PAMAM) by γ‐(methacryloyl oxide) propyltrimethoxysilane (kh570), and MKh‐GO was synthesized by condensation reaction. The chemical structures and morphologies of the samples were characterized by Fourier transform‐infrared spectroscopy (FTIR) and transmission electron microscope (TEM). The magnetic response of the sample was tested by vibrating sample magnetometer (VSM). The MKh‐GO was used to separate crude oil in water emulsion; the effects of MKh‐GO dosage, temperature, and pH value on the demulsifying efficiency were investigated. Possible demulsification mechanisms were summarized. The results show that MKh‐GO is successfully synthesized, and MKh‐GO exhibits excellent demulsification performance; MKh‐GO is recycled seven times, and the demulsification efficiency is 97%.  相似文献   

8.
We have realized a new type of dye-sensitized solar cell (DSC) modules. The monolithically series interconnected structure, which is similar to the structure of amorphous silicon solar cells (SCs), was employed so that the advantages of DSCs compared to conventional silicon SCs (low costs, low energy consumption in production processes) were fully exploited. To achieve other important features of DSCs (transparency and color choice) we have developed transparent counter electrodes (CEs) composed of Pt-loaded In2O3:Sn nanoparticles and separators composed of SiO2 nanoparticles to replace conventional non-transparent ones used in the modules. The performance of the new CEs is significantly improved to be close to those of conventional ones during electric generation operations. In all 85% of the maximal conversion efficiency was maintained after 2000 h of a durability test under 1 sun light soaking at 60 °C.  相似文献   

9.
Directional electron transfer and effective charge separation facilitated by graphene sheets have provided an inspiring approach to enhance the efficiencies of photoelectric conversion and photocatalysis. Herein, we demonstrated the feasibility of constructing a high-performance of the dye-sensitized H2 evolution system using dispersible graphene sheets as both efficient electron transfer carrier and catalyst scaffold. Among the xanthene dyes sensitized H2 evolution catalysts in this study, photocatalyst of Rose Bengal (RB) sensitized graphene decorated with Pt is the most active one and exhibits the highest apparent quantum efficiency (AQE) of 18.5% at wavelength of 550 nm and rather long-term stability for H2 evolution. Dispersible graphene sheets can not only capture electrons from the excited dye and then transfer them to the decorated catalysts efficiently for improving charge separation with a small energy loss, but also afford large interfaces for highly dispersing catalyst nanoparticles with more active sites, thereby significantly enhancing the H2 evolution efficiency than graphite oxide (GO) and multiwall carbon nanotubes (MWCNTs). This work proposes a potential strategy to develop efficient photocatalytic systems for solar-energy-conversion and provides a new insight into mechanistic study of photoinduced electron transfer by effective synergetic combination of dispersible graphene sheets with an efficient dye and a H2 evolution catalyst.  相似文献   

10.
Advanced electrocatalysts for the fabrication of sustainable hydrogen from water splitting are innermost to energy research. Herein, we report the growth of iron diselenide (FeSe2) nanorods on graphene oxide (GO) sheets using two-step process viz., simple hydrothermal reduction and followed by wet chemical process. The orthorhombic phase of FeSe2 incorporated GO nanosheet was developed as a low-cost and efficient electrocatalyst for hydrogen evolution reaction (HER) by water splitting. The phase purity, crystalline structure, surface morphology and elemental composition of the synthesized samples have been investigated by UV–visible absorption spectroscopy (UV–vis), fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDS). Voltammetry and Tafel polarization methods have been utilized to assess the performance of various weight ratio of GO nanosheet in FeSe2 nanorods towards H2 evolution. Detailed electrochemical investigations revealed that the 30% FeSe2/GO composite showed a tremendous electrocatalytic HER activity in acidic medium with high cathodic current density of 9.68 mA/cm2 at η = 250 mV overpotential and with a Tafel slope of 64 mV/dec. The 30% FeSe2/GO composite offers a high synergistic effect towards HER activity, which is mainly due to high electrochemical active catalytic sites, low charge-transfer resistance and enhanced electrocatalytic performances of H2 production. The present analysis revealed the possible application of FeSe2/GO composite as a promising low-cost alternative to platinum based electrocatalysts for H2 production.  相似文献   

11.
CO selective methanation (CO-SMET) is as an ideal H2-rich gases purification measurement for proton exchange membrane fuel cell system. Herein, the graphene aerogel-mixed metal oxide (GA-MMO) supported Ru–Ni bimetallic catalysts are exploited for CO-SMET in H2-rich gases. The results reveal that a three-dimensional network structure GA-MMO aerogel with higher specific surface area, better thermal stability and more defects or structural disorders is formed when MMO:GO mass ratio is in the range of 1–4. After loading of Ru, more NiO are reduced to metallic Ni by hydrogen spillover effect, and thus obviously enhances the reactivity. The GA-MMO supported Ru–Ni catalyst exhibits more excellent metal dispersion, reducibility, stronger CO adsorption and activation than the MMO supported Ru–Ni catalyst, thereby resulting in better catalytic performance and stability. This work offers new insights into the construction of highly active catalyst for the efficient generation of high-quality H2 from H2-rich gases.  相似文献   

12.
Developing low cost, highly efficient, and long-term stability electrocatalysts are critical for direct oxidation methanol fuel cell. Despite huge efforts, designing low-cost electrocatalysts with high activity and long-term durability remains a significant technical challenge. Here, we prepared a new kind of platinum-nickel catalyst supported on silane-modified graphene oxide (NH2-rGO) by a two-step method at room temperature. Powder X-ray diffraction, UV–vis spectroscopy, Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy results confirm that GO was successfully modified with 3-aminopropyltriethoxysilane (APTES), which helps to uniformly disperse PtNi nanoparticles. Cyclic voltammetry, chronoamperometry, CO-stripping and rotating disk electrode (RDE) results imply that PtNi/NH2-rGO catalyst has significantly higher catalytic activity, enhance the CO toxicity resistance, higher stability and much faster kinetics of methanol oxidation than commercial Pt/C under alkaline conditions.  相似文献   

13.
A rapid and simple route to synthesize highly conductive graphene-based nanosheets for use as a flexible counter electrode in dye-sensitized solar cells is presented. The flexible counter electrode is free of transparent conductive oxide layer, i.e., TCO-free. A clean graphene with high quality is obtained by the chemical reduction of graphene oxide (GO) using titanium metallic powders in a hydrochloric acid solution. The Ti+3 ions that dissociated from metallic Ti particles in a hydrochloric acid solution result in a clean graphene material with no formation of TiO2 nanoparticles, which are always present on graphene when only Ti+3 ions are used for the reduction, i.e., an anatase TiO2 nanoparticle by-product will be always left on the graphene product when not using metallic Ti particles. The chemical reaction mechanisms for these differences are revealed in this report. The reduced materials are characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, UV–vis spectroscopy and X-ray photoelectron spectroscopy. The four-point probe method is also employed to characterize the surface conductivity of the graphene films. This high quality graphene film exhibits comparable or better performance than those obtained using conventional sputtered Pt counter electrode when used as a flexible counter electrode of dye-sensitized solar cells.  相似文献   

14.
We report the solution processed graphene oxide (GO), NiOx and GO/NiOx bi-layer used as an anode interfacial layer in organic bulk-heterojunction solar cells. The bulk-heterojunction solar cells using GO, NiOx and GO/NiOx bi-layer exhibited the conversion efficiency of 2.33%, 3.10% and 3.48%, respectively. The cell efficiency is correlated with the matching of energy levels between ITO, hole transport layer and P3HT and thus a well-matched stack layer of ITO/GO/NiOx/P3HT:PCBM/LiF/Al shows the best cell efficiency of 3.48% with the JSC of 8.71 mA/cm2, VOC of 0.602 V and FF of 66.44%.  相似文献   

15.
Sun is an inexhaustible source of energy capable of fulfilling all the energy needs of humankind. The energy from the sun can be converted into electricity or used directly. Electricity can be generated from solar energy either directly using photovoltaic (PV) cells or indirectly using concentrated solar power (CSP) technology. Progress has been made to raise the efficiency of the PV solar cells that can now reach up to approximately 34.1% in multi‐junction PV cells. Electricity generation from concentrated solar technologies has a promising future as well, especially the CSP, because of its high capacity, efficiency, and energy storage capability. Solar energy also has direct application in agriculture primarily for water treatment and irrigation. Solar energy is being used to power the vehicles and for domestic purposes such as space heating and cooking. The most exciting possibility for solar energy is satellite power station that will be transmitting electrical energy from the solar panels in space to Earth via microwave beams. Solar energy has a bright future because of the technological advancement in this field and its environment‐friendly nature. The biggest challenge however facing the solar energy future is its unavailability all‐round the year, coupled with its high capital cost and scarcity of the materials for PV cells. These challenges can be met by developing an efficient energy storage system and developing cheap, efficient, and abundant PV solar cells. This article discusses the solar energy system as a whole and provides a comprehensive review on the direct and the indirect ways to produce electricity from solar energy and the direct uses of solar energy. The state‐of‐the‐art procedures being employed for PV characterization and performance rating have been summarized . Moreover, the technical, economic, environmental, and storage‐related challenges are discussed with possible solutions. Furthermore, a comprehensive list of future potential research directions in the field of direct and indirect electricity generation from solar energy is proposed.  相似文献   

16.
With increasing demand for green and clean energy, the research community moves toward electrocatalytic hydrogen production. Herein, we synthesized the reduced graphene oxide decorated-cobalt disulfide (rGO-CoS2) nanocomposites via the one-step facile hydrothermal method and investigated their excellent hydrogen evolution reaction (HER) activities. The rGO-CoS2 nanocomposites showed an aggregated structure of spherical CoS2 nanoparticles interconnected along with GO nanosheets. The rGO-CoS2 nanocomposites exhibited a low overpotential of 377 mV and a small Tafel slope of 121 mV/dec. This work delivers a prospective scheme for developing the high efficient rGO-CoS2 electrocatalysts for future green energy technology in hydrogen production.  相似文献   

17.
Utilization of a broad range of solar spectrum has the potential for high power output from solar cells. However, solar photovoltaics (PVs) can convert only part of the solar electromagnetic spectrum into electricity efficiently. The remaining of the solar radiation is often dissipated in the form of heat, which causes performance reduction and reduces the life expectancy of the solar PV cell. Thermoelectric generators (TEGs) are devices that operate like a heat engine by converting thermal energy into electricity through thermoelectric effect. Integrating a TEG into a PV converter will enhance its efficiency and reduce the amount of heat dissipated. Different studies have been carried out and are still taking place to increase the total efficiency of a coupled photovoltaic thermoelectric generator (PV-TEG) system. This review discusses the concept of PV converters and thermoelectric devices and presents the various models and numerical and experimental investigations on performance enhancement of integrated PV-TEGs. The influence of key parameters on the performance of PV-TEG were also discussed. The review is expected to serve as a reference to recent work on research and development of integrated PV-TEG systems.  相似文献   

18.
Performance evaluation of solar photovoltaic/thermal systems   总被引:6,自引:0,他引:6  
The major purpose of the present study is to understand the performance of an integrated photovoltaic and thermal solar system (IPVTS) as compared to a conventional solar water heater and to demonstrate the idea of an IPVTS design. A commercial polycrystalline PV module is used for making a PV/T collector. The PV/T collector is used to build an IPVTS. The test results show that the solar PV/T collector made from a corrugated polycarbonate panel can obtain a good thermal efficiency. The present study introduces the concept of primary-energy saving efficiency for the evaluation of a PV/T system. The primary-energy saving efficiency of the present IPVTS exceeds 0.60. This is higher than for a pure solar hot water heater or a pure PV system. The characteristic daily efficiency ηs* reaches 0.38 which is about 76% of the value for a conventional solar hot water heater using glazed collectors (ηs*=0.50). The performance of a PV/T collector can be improved if the heat-collecting plate, the PV cells and the glass cover are directly packed together to form a glazed collector. The manufacturing cost of the PV/T collector and the system cost of the IPVTS can also be reduced. The present study shows that the idea of IPVTS is economically feasible too.  相似文献   

19.
3D graphene, which was synthesized directly from CO2 via its exothermic reaction with liquid K, exhibited excellent performance as a counter electrode for a dye‐sensitized solar cell (DSSC). The DSSC has achieved a high power conversion efficiency of 8.25%, which is 10 times larger than that (0.74%) of a DSSC with a counter electrode of the regular graphene synthesized via chemical exfoliation of graphite. The efficiency is even higher than that (7.73%) of a dye‐sensitized solar cell with an expensive standard Pt counter electrode. This work provides a novel approach to utilize a greenhouse gas for DSSCs.  相似文献   

20.
Development of more efficient electrodes is essential to improve the competitiveness of vanadium redox flow battery (VRFB) systems. Covalent functionalization of carbon structure in graphene oxide with phosphonic acid groups was carried out to enhance the electrode wettability. The phosphonated graphene oxide (P-GO) was characterized and found displaying an improved electrocatalytic performance towards electrooxidation/electroreduction of vanadium ion pairs. The defect in P-GO structure increased the negative charge density on the surface leading to higher vanadium ions tendency for electrooxidation/electroreduction reactions. The battery performance was evaluated using electrodes made of carbon felt hosted GO and P-GO in a single cell VRFB and 180 charge-discharge cycles were recorded. The VRFB with P-GO displayed an improved performance and stable coulombic, voltage and energy efficiency compared to VRFB with GO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号