首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A simplified procedure for cell‐free biocatalytic reductions of conjugated CC double bonds using old yellow enzymes (OYEs) is reported. Instead of indirectly regenerating YqjM (an OYE homologue from B. subtilis) or NemA (N‐ethylmaleimide reductase from E. coli) via regeneration of reduced nicotinamide cofactors, we demonstrate that direct regeneration of catalytically active reduced flavins is an efficient and convenient approach. Reducing equivalents are provided from simple sacrificial electron donors such as ethylenediaminetetraacetate (EDTA), formate, or phosphite via photocatalytic oxidation. This novel photoenzymatic reaction scheme was characterized. Up to 65% rates of the NADH‐driven reaction were obtained while preserving enantioselectivity. The chemoselectivity of the novel approach was exclusive. Even when using crude cell extracts as biocatalyst preparations, only CC bond reduction was observed while ketone and aldehyde groups remained unaltered. Overall, a simple and practical approach for photobiocatalytic reductions is presented.  相似文献   

2.
黄萍  叶代勇 《涂料工业》2011,41(10):48-53
采用异佛尔酮二异氰酸酯(IPDI)、聚酯二元醇(聚己二酸-1,4丁二醇酯)(PBA)为主要原料合成了环氧改性的、固体分约为50%的水性紫外光固化聚氨酯分散体(PUD)。通过预聚物中聚氨酯分子末端的—NCO基团与丙烯酸羟丙酯(HPA)和季戊四醇三丙烯酸酯(PETA)上的羟基发生反应,从而引入碳碳双键,使PUD具备紫外光固化的性能。研究了水性UV分散体的碳碳双键对水性聚氨酯的拉伸强度、硬度、粒径等性能方面的影响,同时对涂膜进行动态力学性能测试(DMA)和断面结构表征(SEM)。结果表明:双键含量增加,UV涂料的拉伸强度和硬度增大,分散体和涂料的其他性能基本不变;DMA测试表明随着双键含量的减小,软段的T_g(s)移向低温,硬段的T_g(h)移向高温,相分离趋于完全;SEM测试表明树脂的交联程度越大,抵抗断裂的程度也越大。  相似文献   

3.
《国际聚合物材料杂志》2012,61(3-4):435-449
Abstract

Based on a kinetic model involving competing parallel reactions for free-radical addition to the double bond of a molecule with the formation of 1:1 adduct and participation of three radical types in the chain propagation, versions of the rate equation with 1 - 3 measurable parameters are derived. These versions make it possible to describe the nonmonotonic (with maximum) dependence of the formation rate of an addition product on concentration of the unsaturated compound. The unbranched chain process occurs in binary liquid systems comprising saturated and unsaturated components at comparable concentrations. Application of the competition kinetics of free-radical addition to oxidation of some hydrocarbons is discussed when the reaction that competes with chain propagation reactions involving the alkylperoxy radical RO2 gives the cyclic alkylhydrotetraoxy radical [R(?H)O4H] as a less reactive radical inhibiting the chain process of formation of the main products of oxidation.  相似文献   

4.
(4R,6R)‐Actinol can be stereo‐selectively synthesized from ketoisophorone by a two‐step conversion using a mixture of two enzymes: Candida macedoniensis old yellow enzyme (CmOYE) and Corynebacterium aquaticum (6R)‐levodione reductase. However, (4S)‐phorenol, an intermediate, accumulates because of the limited substrate range of CmOYE. To address this issue, we solved crystal structures of CmOYE in the presence and absence of a substrate analogue p‐HBA, and introduced point mutations into the substrate‐recognition loop. The most effective mutant (P295G) showed two‐ and 12‐fold higher catalytic activities toward ketoisophorone and (4S)‐phorenol, respectively, than the wild‐type, and improved the yield of the two‐step conversion from 67.2 to 90.1 %. Our results demonstrate that the substrate range of an enzyme can be changed by introducing mutation(s) into a substrate‐recognition loop. This method can be applied to the development of other favorable OYEs with different substrate preferences.  相似文献   

5.
Carbonyl-centered hydrogen bonds with various strength and geometries are often exploited in materials to embed dynamic and adaptive properties, with the use of thiocarbonyl groups as hydrogen-bonding acceptors remaining only scarcely investigated. We herein report a comparative study of C2=O and C2=S barbiturates in view of their differing hydrogen bonds, using the 5,5-disubstituted barbiturate B and the thiobarbiturate TB as model compounds. Owing to the different hydrogen-bonding strength and geometries of C2=O vs. C2=S, we postulate the formation of different hydrogen-bonding patterns in C2=S in comparison to the C2=O in conventional barbiturates. To study differences in their association in solution, we conducted concentration- and temperature-dependent NMR experiments to compare their association constants, Gibbs free energy of association ∆Gassn., and the coalescence behavior of the N-H‧‧‧S=C bonded assemblies. In Langmuir films, the introduction of C2=S suppressed 2D crystallization when comparing B and TB using Brewster angle microscopy, also revealing a significant deviation in morphology. When embedded into a hydrophobic polymer such as polyisobutylene, a largely different rheological behavior was observed for the barbiturate-bearing PB compared to the thiobarbiturate-bearing PTB polymers, indicative of a stronger hydrogen bonding in the thioanalogue PTB. We therefore prove that H-bonds, when affixed to a polymer, here the thiobarbiturate moieties in PTB, can reinforce the nonpolar PIB matrix even better, thus indicating the formation of stronger H-bonds among the thiobarbiturates in polymers in contrast to the effects observed in solution.  相似文献   

6.
Three cloned enoate reductases from the “old yellow enzyme” family of flavoproteins were investigated in the asymmetric bioreduction of activated alkenes. 12‐Oxophytodienoate reductase isoenzymes OPR1 and OPR3 from Lycopersicon esculentum (tomato), and YqjM from Bacillus subtilis displayed a remarkably broad substrate spectrum by reducing α,β‐unsaturated aldehydes, ketones, maleimides and nitroalkenes. The reaction proceeded with absolute chemoselectivity – only the conjugated CC bond was reduced, while isolated olefins and carbonyl groups remained intact – with excellent stereoselectivities (ees up to >99%). Upon reduction of a nitroalkene, the stereochemical outcome could be determined via choice of the appropriate enzyme (OPR1 versus OPR3 or YqjM), which furnished the corresponding enantiomeric nitroalkanes in excellent ee. Molecular modelling suggests that this “enzyme‐based stereocontrol” is caused by subtle differences within the active site geometries.  相似文献   

7.
8.
It was found that Δ4,5‐steroid 5β‐reductases are capable of reducing also small molecules bearing an activated CC double bond such as monocyclic enones and acyclic enoate esters. As preferred Δ4,5‐steroid 5β‐reductase (5β‐StR) for this purpose, 5β‐StR from Arabidopsis thaliana was used. In part, enzyme activities are even higher than that for progesterone. Successful preliminary biotransformations with enzymatic in situ cofactor recycling were also carried out. When using the prochiral compound isophorone as a substrate, a high enantioselective reaction course (>99% ee) was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号