首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage‐gated ion channels are large tetrameric multidomain membrane proteins that play crucial roles in various cellular transduction pathways. Because of their large size and domain‐related mobility, structural characterization has proved challenging. We analyzed high‐resolution solid‐state NMR data on different isotope‐labeled protein constructs of a bacterial cyclic nucleotide‐activated K+ channel (MlCNG) in lipid bilayers. We could identify the different subdomains of the 4×355 residue protein, such as the voltage‐sensing domain and the cyclic nucleotide binding domain. Comparison to ssNMR data obtained on isotope‐labeled cell membranes suggests a tight association of negatively charged lipids to the channel. We detected spectroscopic polymorphism that extends beyond the ligand binding site, and the corresponding protein segments have been associated with mutant channel types in eukaryotic systems. These findings illustrate the potential of ssNMR for structural investigations on large membrane‐embedded proteins, even in the presence of local disorder.  相似文献   

2.
Lochner M 《Chimia》2010,64(4):241-246
Ion channels are transmembrane protein complexes that are found in virtually all cells. They fulfill a crucial physiological function by facilitating communication between and within cells. Consequently, impaired channel function, e.g. due to mutations, often has profound physiological effects. Their central role in cell-to-cell communication makes ion channels formidable drug targets, albeit their transmembrane nature often hampers efforts to obtain high resolution structures and hence impedes drug discovery. Decades of electrophysiology and molecular biology studies have made critical contributions to our understanding of ion channel structure and function. Small organic compounds, acting as either agonist or antagonist, have played vital roles in such studies and in recent years these molecular tools have become more sophisticated. Decorated with fluorescent, photoaffinity and/or affinity tags small molecular tools enable imaging, binding site mapping and isolation of biomolecular targets. Here, some of the methodologies employed in the context of ion channels are discussed and highlighted with representative examples.  相似文献   

3.
Cyclic nucleotides are important second messengers involved in cellular events, and analogues of this type of molecules are promising drug candidates. Some cyclic nucleotide analogues have become standard tools for the investigation of biochemical and physiological signal transduction pathways, such as the Rp-diastereomers of adenosine and guanosine 3′,5′-cyclic monophosphorothioate, which are competitive inhibitors of cAMP- and cGMP-dependent protein kinases. Next generation analogues exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity, or are caged or photoactivatable for fast and/or targeted cellular imaging. Novel specific nucleotide analogues activating or inhibiting cyclic nucleotide-dependent ion channels, EPAC/GEF proteins, and bacterial target molecules have been developed, opening new avenues for basic and applied research. This review provides an overview of the current state of the field, what can be expected in the future and some practical considerations for the use of cyclic nucleotide analogues in biological systems.  相似文献   

4.
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.  相似文献   

5.
We describe fluorescent oligonucleotide probes labeled with novel (phenylethynyl)pyrene dyes attached to locked nucleic acids. Furthermore, we prove the utility of these probes for the effective detection of single-nucleotide polymorphisms in natural nucleic acids. High-affinity hybridization of the probes and excellent fluorescence responses to single-base mismatches in DNA/RNA targets are demonstrated in model dual-probe and doubly labeled probe formats. This stimulated us to develop two diagnostic systems for the homogeneous detection of a drug-resistance-causing mutation in HIV-1 protease cDNA and RNA gene fragments. Target sequences were obtained by analysis of 200 clinical samples from patients currently receiving anti-HIV/AIDS combination therapy at the Russian Federal AIDS Center. Using these fluorescent oligonucleotides, we were able to detect the target mutation despite all the challenges of the natural targets, that is, the presence of additional mutations, neighboring sequence variation, and low target concentration, which typically reduce binding and effectiveness of sensing by fluorescent oligonucleotides.  相似文献   

6.
7.
In biological experimentation and especially in drug discovery there is a trend towards more complex test systems. Cell-based assays are replacing conventional binding or enzyme assays more and more. This development is strongly driven by novel fluorescent probes that give insight into cellular processes. Target proteins are studied in their natural environment; this gives much more realistic test results, especially with respect to enzyme location and kinetics. However, in the complex environment of cells, many parameters contribute to the performance of the protein of interest. Therefore, it would be desirable to monitor simultaneously as many of the relevant cellular processes as possible. Here, we discuss the possibilities and limitations provided by multiparameter monitoring of cellular events with fluorescent probes. Some novel examples of the use of fluorescent probes and multiparameter imaging are shown.  相似文献   

8.
Glycosyltransferases (GTs) are a large class of carbohydrate‐active enzymes that are involved, in both pro‐ and eukaryotic organisms, in numerous important biological processes, from cellular adhesion to carcinogenesis. GTs have enormous potential as molecular targets for chemical biology and drug discovery. For the full realisation of this potential, operationally simple and generally applicable GT bioassays, especially for inhibitor screening, are indispensable tools. In order to facilitate the development of GT high‐throughput screening assays for the identification of GT inhibitors, we have developed novel, fluorescent derivatives of UDP‐galactose (UDP‐Gal) that are recognised as donor analogues by several different retaining galactosyltransferases (GalTs). We demonstrate for one of these derivatives that fluorescence emission is quenched upon specific binding to individual GalTs, and that this effect can be used as the read‐out in ligand‐displacement experiments. The novel fluorophore acts as an excellent sensor for several different enzymes and is suitable for the development of a new type of GalT bioassay, whose modular nature and operational simplicity will significantly facilitate inhibitor screening. Importantly, the structural differences between the natural donor UDP‐Gal and the new fluorescent derivatives are minimal, and the general assay principle described herein may therefore also be applicable to other GalTs and/or proteins that use nucleotides or nucleotide conjugates as their cofactor.  相似文献   

9.
We have prepared two fluorescent DNA probes—UDBF and UDBT, containing 2‐ethynyldibenzofuran and 2‐ethynyldibenzothiophene moieties, respectively, covalently attached to the base dU—and incorporated them in the central positions of oligodeoxynucleotides (ODNs) so as to develop new types of quencher‐free linear beacon probes and investigate the effect of functionalization of the fluorene scaffold on the photophysical properties of the fluorescent ODNs. The ODNs containing adenine flanking bases (FBs) displayed a selective fluorescence “turn‐off” response to mismatched targets with guanine bases; this suggests that these probes could be used as base‐discriminating fluorescent nucleotides. On the other hand, we observed a “turn‐on” response to matched targets when the UDBF and UDBT units of ODNs containing pyrimidine‐based FBs were positioned opposite the four natural nucleobases. In particular, an ODN incorporating UDBT and cytosine FBs has potential use in single‐nucleotide polymorphism typing.  相似文献   

10.
The development of biophysical systems that enable an understanding of the structure and ligand‐binding properties of G‐quadruplex (GQ)‐forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ‐directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H‐Telo) DNA and RNA repeats in a cell‐like confined environment by using conformation‐sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2‐ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2′‐deoxy and ribonucleoside probes, composed of a 5‐benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H‐Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H‐Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy‐to‐handle RMs could provide new opportunities to study and devise screening‐compatible assays in a cell‐like environment to discover GQ binders of clinical potential.  相似文献   

11.
A型γ-氨基丁酸(aminobutyric acid,GABA)是一类配体门控离子通道型受体,亦为脊椎动物和非脊椎动物的中枢神经系统内最主要的抑制性神经递质GABA的受体,其离子通道上存在氟虫腈等杀虫剂的作用靶点,是医药和农药工作者研究的重点。通过RACE-PCR技术成功获取新基因鲫鱼GABAARβ_3的全长(GenBank登录号:KC964110)。序列分析显示该基因核苷酸序列共2 767 bp,含有1个由502个氨基酸残基组成的开放阅读框,编码蛋白分子量约为56 KD。报道了该基因的生物信息学分析和三维结构模拟及其与氟虫腈作用情况,BLAST结果表明,氨基酸序列与其他已知GABAARβ_3基因家族成员间序列相似性介于76%~89%之间,并与其他亚族蛋白基因存在很高的同源性。以线虫体内对阿维菌素敏感的谷氨酸门控氯离子通道受体蛋白的α亚基(PDB ID:3RHW)作为模板,用DS(Discovery Studio)模拟鲫鱼GABAAβ_3亚基的同源五聚体结构,优化结构模型,与农药配体分子做分子对接,计算作用模式和结合能力。研究鱼类GABAAR亚基与农药分子的作用。  相似文献   

12.
Metformin is the leading drug for treating type 2 diabetics, but the mechanism of action of metformin, despite some suggested mechanisms such as the activation of the AMP-kinase, is largely unknown. Among its many positive effects are the reduction of blood glucose levels, the inhibition of cyclic AMP synthesis, gluconeogenesis and an increase in sensitivity to insulin. Recent studies have described the natural antagonist of cyclic AMP, prostaglandylinositol cyclic phosphate. Synthesis of cyclic PIP is stimulated in all organs by hormones such as insulin and also by drugs such as metformin. Its primary action is to trigger the dephosphorylation of proteins/enzymes, phosphorylated on serine/threonine residues. Cyclic PIP triggers many of the regulations requested by insulin. The parallels between the beneficial effects of metformin and the regulations triggered by cyclic PIP suggest that the mechanism of action of this key drug may well be explained by its stimulation of the synthesis of cyclic PIP.  相似文献   

13.
G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.  相似文献   

14.
The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.  相似文献   

15.
16.
Lipids play critical roles in a litany of physiological and pathophysiological events, often through the regulation of protein function. These activities are generally difficult to characterize, however, because the membrane environment in which lipids operate is very complex. Moreover, lipids have a diverse range of biological functions, including the recruitment of proteins to membrane surfaces, actions as small-molecule ligands, and covalent protein modification through lipidation. Advancements in the development of bioorthogonal reactions have facilitated the study of lipid activities by providing the ability to selectively label probes bearing bioorthogonal tags within complex biological samples. In this Account, we discuss recent efforts to harness the beneficial properties of bioorthogonal labeling strategies in elucidating lipid function. Initially, we summarize strategies for the design and synthesis of lipid probes bearing bioorthogonal tags. This discussion includes issues to be considered when deciding where to incorporate the tag, particularly the presentation within a membrane environment. We then present examples of the application of these probes to the study of lipid activities, with a particular emphasis on the elucidation of protein-lipid binding interactions. One such application involves the development of lipid and membrane microarray analysis as a high-throughput platform for characterizing protein-binding interactions. Here we discuss separate strategies for binding analysis involving the immobilization of either whole liposomes or simplified isolated lipid structures. In addition, we present the different strategies that have been used to derivatize membrane surfaces via bioorthogonal reactions, either by using this chemistry to produce functionalized lipid scaffolds that can be incorporated into membranes or through direct modification of intact membrane surfaces. We then provide an overview of the development of lipid activity probes to label and identify proteins that bind to a particular lipid from complex biological samples. This process involves the strategy of activity-based proteomics, in which proteins are collectively labeled on the basis of function (in this case, ligand binding) rather than abundance. We summarize strategies for designing and applying lipid activity probes that allow for the selective labeling and characterization of protein targets. Additionally, we briefly comment on applications other than studying protein-lipid binding. These include the generation of new lipid structures with beneficial properties, labeling of tagged lipids in live cells for studies involving fluorescence imaging, elucidation of covalent protein lipidation, and identification of biosynthetic lipid intermediates. These applications illustrate the early phase of the promising field of applying bioorthogonal chemistry to the study of lipid function.  相似文献   

17.
Voltage-gated sodium ion channels (NaVs) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of NaVs hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) – a potent and reversible inhibitor of multiple NaV isoforms – and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or ‘click’ functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na+ conductance when applied to recombinant NaVs and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of NaVs expressed in the plasma membranes of cells.  相似文献   

18.
Modern mass spectrometry techniques have increasingly found use in studies on the binding of anticancer metallodrugs to potential cellular targets. In this context, investigations on the detection efficiency of adduct formation between antiproliferative Ru(arene) complexes and proteins in dependence of the mass analyzer used in the electrospray ionization (ESI) mass spectrometer are presented. The potential in detecting adducts between the metal center and the protein was found to be dependent on the mass analyzer and the denticity of the metal–protein interaction. This might be related to the design of the mass analyzers with different conditions in the ion travelling pathways, which affects adducts when the protein acts as a monodentate ligand more highly than in cases when the protein is a multidentate ligand. This could also impact the biological activity and indicate different pathways of metabolism of biomolecule adducts.  相似文献   

19.
Complex target SELEX   总被引:2,自引:0,他引:2  
Aptamers are non-naturally occurring structured oligonucleotides that may bind to small molecules, peptides, and proteins. Typically, aptamers are generated by an in vitro selection process referred to as SELEX (systematic evolution of ligands by exponential enrichment). Aptamers that bind with high affinity and specificity to proteins that reside on the cell surface have potential utility as therapeutic antagonists, agonists, and diagnostic agents. When the target protein requires the presence of the cell membrane (e.g., G-protein-coupled receptors, ion channels) or a co-receptor to fold properly, it is difficult or impossible to program the SELEX experiment with purified, soluble protein target. Recent advances in which the useful range of SELEX has been extended from comparatively simple purified forms of soluble proteins to complex mixtures of proteins in membrane preparations or in situ on the surfaces of living cells offer the potential to discover aptamers against previously intractable targets. Additionally, in cases in which a cell-type specific diagnostic is sought, the most desirable target on the cell surface may not be known. Successful application of aptamer selection techniques to complex protein mixtures can be performed even in the absence of detailed target knowledge and characterization. This Account presents a review of recent work in which membrane preparations or whole cells have been utilized to generate aptamers to cell surface targets. SELEX experiments utilizing a range of target "scaffolds" are described, including cell fragments, parasites and bacteria, viruses, and a variety of human cell types including adult mesenchymal stem cells and tumor lines. Complex target SELEX can enable isolation of potent and selective aptamers directed against a variety of cell-surface proteins, including receptors and markers of cellular differentiation, as well as determinants of disease in pathogenic organisms, and as such should have wide therapeutic and diagnostic utility.  相似文献   

20.
The creation of novel bioanalytical tools for the detection and monitoring of a range of important target substances and biological events in vivo and in vitro is a great challenge in chemical biology and biotechnology. Protein‐based fluorescent biosensors—integrated devices that convert a molecular‐recognition event to a fluorescent signal—have recently emerged as a powerful tool. As the recognition units various proteins that can specifically recognize and bind a variety of molecules of biological significance with high affinity are employed. For the transducer, fluorescent proteins, such as green fluorescent protein (GFP) or synthetic fluorophores, are mostly adopted. Recent progress in protein engineering and organic synthesis allows us to manipulate proteins genetically and/or chemically, and a library of such protein scaffolds has been significantly expanded by genome projects. In this review, we briefly describe the recent progress of protein‐based fluorescent biosensors on the basis of their platform and construction strategy, which are primarily divided into the genetically encoded fluorescent biosensors and chemically constructed biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号