首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

2.
The passing of the Renewable Energy Law (REL) in 2005 demonstrated China’s commitment to renewable energy development. In the 3 years after the REL, China’s renewable electricity capacity grew rapidly. From 2006 to 2008, China’s wind capacity installation more than doubled every year for 3 years in a row. However, three facts prevent us from being optimistic about China’s renewable electricity future. First, considered as a share of total capacity, renewable electricity capacity is decreasing instead of increasing. This is due simply to the rapid growth of fossil fuel capacity. Second, a significant amount of renewable generation capacity is wasted because it is not connected to the electricity grid. Finally, renewable electricity plants are running at a low level of efficiency. Based on an in-depth analysis of China’s existing renewable energy policy, we suggest that these challenges should be dealt with by introducing a market-based mandatory renewable portfolio requirement coupled with strong regulatory monitoring of grid enterprises.  相似文献   

3.
Renewable energy portfolio standards have created a large increase in the amount of renewable electricity production, and one technology that has benefited greatly from these standards is wind power. The uncertainty inherent in wind electricity production dictates that additional amounts of conventional generation resources be kept in reserve, should wind electricity output suddenly dip. The introduction of plug‐in hybrid electric vehicles into the transportation fleet presents an possible solution to this problem through the concept of vehicle‐to‐grid power. The ability of vehicle‐to‐grid power systems to help solve the variability and uncertainty issuess in systems with large amounts of wind power capacity is examined through a multiparadigm simulation model. The problem is examined from the perspectives of three different stakeholders: policy makers, the electricity system operator and plug‐in hybrid electric vehicle owners. Additionally, a preliminary economic analysis of the technology is performed, and a comparison made with generation technologies that perform similar functions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we are analyzing the advantages of energy incentives for all the stakeholders in an energy system. The stakeholders include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in this work: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first type aims increasing the share of renewable energies in the electricity system while the second type aims development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sector. In this work, we are analyzing the advantages of energy incentives for all the stakeholders in an energy system. The stakeholders include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in this work: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first type aims to increase the share of renewable energies in the electricity system while the second type aims the development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sector. The results of the analysis showed that replacing fossil fuel-based electricity generation with wind and solar power is a less expensive way for the energy consumer to reduce GHG emissions (60 and 92 CAD/ tonne CO2e for wind and solar, respectively) compared to investing on energy storage technologies (225 and 317 CAD/ tonne CO2e for Power-to-Gas and battery powered forklifts, respectively). However, considering the current Ontario's electricity mix, incentives for the Power-to-Gas and battery powered technologies are less expensive ways to reduce emissions compared to replacing the grid with wind and solar power technologies (1479 and 2418 CAD/ tonne CO2e for wind and solar, respectively). Our analysis also shows that battery storage and hydrogen storage are complementary technologies for reducing GHG emissions in Ontario.  相似文献   

5.
《Energy Policy》2005,33(2):209-219
This study uses optimization modeling to study efficient ways to integrate renewable energy systems to provide electricity and heat in rural Japan. The model provides minimum cost system configuration and operation taking into account hour-by-hour energy availability and demand. Grid electricity is available to rural areas of Japan, but it is relatively expensive. Local renewable energy generation can be economic while using grid electricity to compensate for the intermittency of the renewable generation. In the model, renewable electricity can be provided by a combination of wind, photovoltaic, and biomass. Heat can be provided by petroleum, LPG, and geothermal heat pumps (GHPs). We find that due to the relatively high cost of grid electricity, there is significant penetration of wind generation. In turn, the penetration of wind creates economic conditions that encourage GHP penetration. The integrated renewable system reduces the annual cost of the entire system by 31%, and reduces the carbon emissions by 50%.  相似文献   

6.
The role of hydrogen in long run sustainable energy scenarios for the world and for the case of Germany is analysed, based on key criteria for sustainable energy systems. The possible range of hydrogen within long-term energy scenarios is broad and uncertain depending on assumptions on used primary energy, technology mix, rate of energy efficiency increase and costs degression (“learning effects”). In any case, sustainable energy strategies must give energy efficiency highest priority combined with an accelerated market introduction of renewables (“integrated strategy”). Under these conditions hydrogen will play a major role not before 2030 using natural gas as a bridge to renewable hydrogen. Against the background of an ambitious CO2-reduction goal which is under discussion in Germany the potentials for efficiency increase, the necessary structural change of the power plant system (corresponding to the decision to phase out nuclear energy, the transformation of the transportation sector and the market implementation order of renewable energies (“following efficiency guidelines first for electricity generation purposes, than for heat generation and than for the transportation sector”)) are analysed based on latest sustainable energy scenarios.  相似文献   

7.
Renewable Energy Communities (RECs) have been introduced by the Renewable Energy European Directive (REDII) in order to allow their members to collectively produce, consume, store and sell renewable energy. With the distributed generation deployment, the electricity injection into power grids has to be limited. Thereby, the RES management has to maximise the local energy self-consumption (SC). The present work deals with Power-to-Gas (PtG) application for blending hydrogen in the local gas grid for maximising the energy-SC, comparing it with traditional electric batteries (PtP). Moreover, this study investigate how SC-based tariffs for RECs can represent an indirect incentive for hydrogen production. To do so, a case study, consisting of 200 dwellings, has been analysed. Four PV configuration have been considered for evaluating different RES excess conditions. PtP and PtG systems have been implemented and compared each other. The hydrogen production cost has been assessed exploiting the renewable electricity incentive scheme.  相似文献   

8.
Increasing global energy demand and the continued reliance on non-renewable energy sources, especially in developing countries, will cause continued increases in greenhouse gas emissions unless alternative electricity generation methods are employed. Although renewable energy sources can provide a clean way to produce electricity, the intermittent nature of many existing renewable energy sources, such as energy from the wind or sun, can cause instability in the energy balance. Energy storage systems such as power-to-gas may provide a clean and efficient way to store the overproduced electricity. In this work, a power-to-gas energy storage system coupled with a chemical looping combustion combined-cycle power generation system is proposed to provide base and intermediate load power from the unused electricity from the grid. Enhanced process integration was employed to achieve optimal heat and exergy recovery. The simulation results using ASPEN Plus V8.8 suggest that electric power generation with an overall energy efficiency of 56% can be achieved by using a methane chemical looping combustion power generation process with additional hydrogen produced from a solid oxide electrolysis cell. The proposed system was also evaluated to further improve the system's total energy efficiency by changing the key operating parameters.  相似文献   

9.
The concept of intelligent electricity grids, which primarily involves the integration of new information and communication technologies with power transmission lines and distribution cables, is being actively explored in the European Union and the United States. Both developments share common technological developmental goals but also differ distinctly towards the role of distributed generation for their future electrical energy security. This paper looks at options that could find relevance to New Zealand (NZ), in the context of its aspiration of achieving 90% renewable energy electricity generation portfolio by 2025. It also identifies developments in technical standardization and industry investments that facilitate a pathway towards an intelligent or smart grid development for NZ. Some areas where policy can support research in NZ being a “fast adapter” to future grid development are also listed.This paper will help policy makers quickly review developments surrounding SmartGrid and also identify its potential to support NZ Energy Strategy in the electricity infrastructure. This paper will also help researchers and power system stakeholders for identifying international standardization, projects and potential partners in the area of future grid technologies.  相似文献   

10.
Globally, electricity systems are going through transitions. The contributions from renewable energy‐based power generation, both in installed capacity and electricity generation, are moving from marginal to the mainstream. India is not an exception; it is aggressively pursuing this transition by fixing steep targets for renewable capacity additions. While the cost of renewable energy sources is expected to fast reach grid parity, the policy interventions play a critical role in ramping up the efforts to support the proposed investments in renewable capacity and renewable electricity generation. In this respect, this research attempts to analyze the effectiveness of renewable energy policies such as Renewable Purchase Obligation (RPO) and Renewable Energy Certificate mechanisms in tapping the renewable energy potential in India. We propose a mixed‐integer linear programming model‐based approach to evaluate the effectiveness of the above interventions in the Indian context. The model is developed and validated as a low carbon electricity planning tool to optimally meet the dynamic electricity demand and RPO targets as well as to manage the unmet total electricity demand and RPO targets. The Karnataka state electricity system (a state in south India) is chosen as a case study. The results suggest that Karnataka Electricity System is moving toward a sustainable renewable energy future even without any support from nonsolar Renewable Energy Certificate policy. However, policy interventions are critical for optimally utilizing the solar generation capacity.  相似文献   

11.
The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored.  相似文献   

12.
Nowadays renewable sources are being used as clean sources to generate electricity and to reduce the dependency on fossil fuels. The uses of renewable sources are being increased in electricity generation and contributed to reduce the greenhouse gas emission. The function of any electrical power system is to connect everyone sufficiently, clean electric power anywhere and anytime of the country. This can be achieved through a modern power system by integrating electrical energy from clean renewable sources into the nation's electric grid to enhance reliability, efficiency and security of the power system. The paper on the status of review the driving force of the generation of renewable energy and proposing electrical energy generation from renewable sources to be ensured at least 20% of total energy of Australia. This paper has been studied the existing electricity generation capacity of Australia from renewable and non-renewable sources. Optimal electricity generation from renewable sources has been examined. The environmental impact of electricity generation from renewable sources has been considered. Under this paper the yearly average wind data of past 20 years and above for some meteorological stations of Australia have been used. The prospective electricity generation from wind turbines and solar photovoltaic panels has been proposed in the paper that will increase electrical energy of the power grid of Australia. It was estimated the capital cost of prospective electricity generation farms from wind and solar PV sources.  相似文献   

13.
Motivated by the increasing transition from fossil fuel–based centralized systems to renewable energy–based decentralized systems, we consider a bi‐objective investment planning problem of a grid‐connected decentralized hybrid renewable energy system. In this system, solar and wind are the main electricity generation resources. A national grid is assumed to be a carbon‐intense alternative to the renewables and is used as a backup source to ensure reliability. We consider both total cost and carbon emissions caused by electricity purchased from the grid. We first discuss a novel simulation‐optimization algorithm and then adapt multi‐objective metaheuristic algorithms. We integrate a simulation module to these algorithms to handle the stochastic nature of this bi‐objective problem. We perform extensive comparative analysis for the solution approaches and report their performances in terms of solution time and quality based on well‐known measures from the literature.  相似文献   

14.
Over the past decade, state governments have emerged as US energy policy leaders. Across the country, states are adopting policy instruments aimed at carbon mitigation and renewable energy deployment. One of the most prevalent and innovative policy instruments is a renewable portfolio standard (RPS), which seeks to increase the share of renewable energy electrification in the electricity market. This analysis evaluates the effectiveness of state energy programs with an empirical investigation of the linkage between state RPS policy implementation and the percentage of renewable energy electricity generation across states. We use a variant of a standard fixed effects model, referred to as a fixed effects vector decomposition, with state-level data from 1998 to 2006. Results indicate that RPS implementation is not a significant predictor of the percentage of renewable energy generation out of the total generation mix, yet for each additional year that a state has an RPS policy, they are found to increase the total amount of renewable energy generation. These findings reveal a potentially significant shortcoming of RPS policies. Political institutions, natural resource endowments, deregulation, gross state product per capita, electricity use per person, electricity price, and the presence of regional RPS policies are also found to be significantly related to renewable energy deployment.  相似文献   

15.
The Electric Vehicle (EV) as a clean alternative to Classic Vehicle that use fossil fuels is promoted as an immediate solution to improve the quality parameters of the environment related to the transport sector. The transition to clean electrified mobility must be considered from the sustainability spectrum, and the planning of a strategy related to the implementation of electric vehicles implies, from the beginning, providing clean energy conditions to go toward a green-to-green paradigm. It should be noted that the successful implementation of the “green electro mobility” concept depends heavily on the green energy supply solutions of green electric vehicle, so Electric Vehicle Charging Stations (EV-CS) should be powered by electricity generation systems based on green resources. This research article has as main objective the environmental impact assessment from the perspective of CO2 emissions embedded in green stand-alone energy systems and the estimation of the environmental benefits of their implementation in the power supply of EV-CS from the perspective of avoided CO2 emissions compared to the classic electricity supply grid. The results indicate that the green energy systems represent feasible solutions for the independent energy support of electric vehicle charging stations, being able to supply electricity based on on-site available 100% alternative energy sources. Related to 1 kWh of electricity, the CO2 emissions embedded in these systems represent on average 11.40% of the CO2 emissions of the electricity supplied through the grid at European level and on average 7.10% of the CO2 emissions of the electricity supplied through the grid worldwide. Results also show that the average price of 1kWh of electricity generated by the analyzed systems is 4.3 times higher than the average unit price of the European Union grid energy, but this indicator must be correlated with the kgCO2/kWh cost savings compared to the electricity production from classic power plants.  相似文献   

16.
In the paper, thermal use of solar energy as well as prospects and problems of its utilisation in Croatia have been given. The National Solar Energy Program, SUNEN, has been established to stimulate the usage of solar energy. The main goals of the program are the assessment of technical and economically viable solar potential in order to define real objectives and tasks to provide use of exploitable indigenous clean and renewable energy potential. The Program addresses benefits, the most promising solar applications and solar potential. Much attention has been given to identification of obstacles and barriers in the process of solar technology dissemination. SUNEN is an initiative to increase solar energy use and to become more compatible with the present renewable energy sources policy in EU and Mediterranean countries. The program proposes twelve different types of thermal solar energy systems, which could be multiplied up to 28 000 installations until the year 2010 with annual heat recovery of approximately 1,5 TWh (5,4 PJ).  相似文献   

17.
The global climate and environmental crisis dictate the need for the development and implementation of environmentally friendly and efficient technical solutions, for example, generation based on renewable energy sources. However, the annually increasing demand for electricity (according to the forecasts of the U.S. Energy Information Administration, the amount of energy consumed for the period 2006–2030 will increase by 44 %) cannot be fully provided by alternative energy. The main reason is not so much the high cost of these technologies, like unstable power generation, which determines the need for an additional reserve of regulated power.The solution to this problem can be the combined use of generation based on renewable energy sources with energy storage units of large capacity. Currently, a promising direction is the use of excess electricity for the production of hydrogen and its further accumulation in hydrogen storage. In this case an additional energy can be generated using industrial fuel cells (electrochemical generators) to compensate for the power shortage.At the same time, the distinctive advantage of hydrogen energy storage systems lies in the ability to accumulate a large amount of energy for long periods of time. This fact makes it possible to increase the reliability of the functioning of the electric power system, to provide power supply with a sufficiently long interruption (in case of faults) or allocation for isolated operation.With an increase in the unit capacity and the share of renewable generation in the total installed capacity, researches that aimed to systematic analysis of the impact of the implemented generation unit and the energy storage system on the parameters of the mode of the electric power system become more relevant. There are a number of tasks can be noted related to determining the optimal location and size of the generation unit and energy storage systems being implemented in terms of reducing power losses and maintaining an appropriate voltage level in the nodes of the electric power system. In this article, a variant of solving the optimization task for a typical 15-bus IEEE scheme is presented by means of software calculation using the bubble sorting method. To achieve this goal, the following tasks were solved: the objective function, which indicates the optimal location and size of the generation unit, and constraints, for example, the available deviation of voltage level, were formed; the software implementation of the algorithm for calculating power flows and power losses using the bubble sorting method was carried out. The results of the work of the program code for two scenarios are presented: for instance, installation of one renewable generation unit with a different range of possible capacities, and are compared with the data obtained in the MATLAB/Simulink software package.  相似文献   

18.
Section 1—Background The conventional energy wisdoms; Alberta, oil and the tarsands—the capital cost crunch; the national energy picture and predictions for future—beginning of the end for conventional policies in [Strategies for Self-Reliance] problems of credibility for the [nuclear solution] cases for conservation and renewable energy as real alternatives to continuing, deepening crisis. Section 2—Specific Issues and Considerations Underlying components of Canadian energy crisis—capital cost pinch; lead time pinch; over-optimistic reserve forecasting; other socio-economic, environmental and political hangups. Examples: Northern energy and Dene threat to development; vast capital costs for tarsand development; environmental and cost checks on rapid, large expansion of hydro potentials; problems for nuclear energy—CANDU and Quebec separatism; overseas sales [sweeteners]. Section 3—The Mounting Crisis Ongoing thrust of energy development versus new problems and policy rationales; particular problems for nuclear power and rapid, large expansion of open-pit coal working; infrastructure and economic-social problems decreasing credibility of nuclear power and expanded coal; lead time and consumer resistance problems for electrification; transport problems for coal; strategic and political problems for nuclear; environment problems for coal; capital cost constraints. Section 4—Conservation and Renewable Energy: the New Solution Preamble to Conservation and the New Renewable Energy Sources. Section 5—Conservation Canada's energy-inefficient society; international economic and social comparisons; potentials for eliminating/reducing demand while raising GNP and showing population growth (both at decreased relative rates); economic development stages and [decoupling] high yielding conservation sectors; quantitative summaries of potentials; policy, social and economic aspects. Section 6—The Renewable Energy Sources Reasons for optimism on renewables; advantages of renewables; solar energy; wind energy; biomass energy; quantitative summaries of potentials; cost and job impacts; conclusions regarding renewable energy sources. Section 7—Programming for Conservation and Renewable Energy Outlines for a structure on which renewables and conservation are developed.  相似文献   

19.
Energy use continues to rise and with it the emissions of CO2. Energy efficiency methods have been applied across sectors. Efficiency gains and energy use per manufactured unit have fallen, particularly in relation to the processing industry. Residential, work place, leisure, and service sectors still use large amounts of energy and produce large emissions of CO2 despite efficiency gains. Successful strategies used in the processing industry for integrating energy systems, namely Total Site targeting, have been applied to locally integrated energy sectors. The method shows that it can be successfully applied to integrate renewables into the energy source mix and consequently reduce the carbon footprint of these locally integrated energy sectors.  相似文献   

20.
The share of the renewable energy sources (RES) in the global electricity market is substantially increasing as a result of the commitment of many countries to increase the contribution of the RES to their energy mix. However, the integration of RES in the electricity grid increases the complexity of the grid management due to the variability and the intermittent nature of these energy sources. Energy storage solutions such as batteries offer either short-term storage that is not sufficient or longer period storage that is significantly expensive. This paper introduces an energy management approach which can be applied in the case of power and desalinated water generation. The approach is based on mathematical optimization model which accounts for random variations in demands and energy supply. The approach allows using desalination plants as a deferrable load to mitigate for the variability of the renewable energy supply and water and/or electricity demands. A mathematical linear programming model is developed to show the applicability of this idea and its effectiveness in reducing the impact of the uncertainty in the environment. The model is solved for the real world case of Saudi Arabia. The optimal solution accounts for random variations in the renewable energy supply and water and/or electricity demands while minimizing the total costs for generating water and power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号