首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO‐B‐selectively activated prodrug, N,N‐bis(2‐chloroethyl)‐2‐(1‐methyl‐1,2,3,6‐tetrahydropyridin‐4‐yl)propanamide (MP‐MUS), for the treatment of gliomas based on 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP). The design of neutral MP‐MUS involved the use of a seeker molecule capable of binding to mitochondrial MAO‐B, which is up‐regulated ≥fourfold in glioma cells. Once the binding occurs, MP‐MUS is converted into a positively charged moiety, P+‐MUS, which accumulates inside mitochondria at a theoretical maximal value of 1000:1 gradient. The LD50 of MP‐MUS against glioma cells is 75 μM , which is two‐ to threefold more potent than temozolomide, a primary drug for gliomas. Importantly, MP‐MUS was found to be selectively toxic toward glioma cells. In the concentration range of 150–180 μM MP‐MUS killed 90–95 % of glioma cells, but stimulated the growth of normal human astrocytes. Moreover, maturation of MP‐MUS is highly dependent on MAO‐B, and inhibition of MAO‐B activity with selegiline protected human glioma cells from apoptosis.  相似文献   

2.
The malignant glioma remains one of the most aggressive human malignancies with extremely poor prognosis. Glioma cell invasion and migration are the main causes of death. In the current study, we studied the expression and the potential functions of tetraspanin 8 (Tspan8) in malignant gliomas. We found that Tspan8 expression level is high in both malignant glioma tissues and in several human glioma cell lines, where it formed a complex integrin α3 and rictor, the latter is a key component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Disruption of this complex, through siRNA-mediated knockdown of anyone of these three proteins, inhibited U251MG glioma cell migration in vitro. We further showed that Tspan8-rictor association appeared required for mTORC2 activation. Knockdown of Tspan8 by the targeted siRNAs prevented mTOR-rictor (mTORC2) assembly as well as phosphorylation of AKT (Ser-473) and protein kinase C α (PKCα) in U251MG cells. Together, these results demonstrate that over-expressed Tspan8 in malignant glioma forms a complex with rictor and integrin α3 to mediate mTORC2 activation and glioma cell migration. Therefore, targeting Tspan8-rictor-integrin α3 complex may provide a potential therapeutic intervention for malignant glioma.  相似文献   

3.
Glioma is the most common and aggressive tumor of the central nervous system. The uncontrolled proliferation, cellular heterogeneity, and diffusive capacity of glioma cells contribute to a very poor prognosis of patients with high grade glioma. Compared to normal cells, cancer cells exhibit a higher rate of glucose uptake, which is accompanied with the metabolic switch from oxidative phosphorylation to aerobic glycolysis. The metabolic reprogramming of cancer cell supports excessive cell proliferation, which are frequently mediated by the activation of oncogenes or the perturbations of tumor suppressor genes. Recently, a growing body of evidence has started to reveal that long noncoding RNAs (lncRNAs) are implicated in a wide spectrum of biological processes in glioma, including malignant phenotypes and aerobic glycolysis. However, the mechanisms of diverse lncRNAs in the initiation and progression of gliomas remain to be fully unveiled. In this review, we summarized the diverse roles of lncRNAs in shaping the biological features and aerobic glycolysis of glioma. The thorough understanding of lncRNAs in glioma biology provides opportunities for developing diagnostic biomarkers and novel therapeutic strategies targeting gliomas.  相似文献   

4.
Background: Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as Nrf2) is associated with cellular progression and chemotherapeutic resistance in some human cancers. We tested the relationship between Nrf2 expression and survival of patients with primary brain tumors (PBTs). Methods: In order to realize Nrf2 protein expression in gliomas, Western blot analysis was performed in normal brain tissue and U87MG, LN229, GBM8401 and U118MG glioma cell lines protein lysates. Then, U87MG, LN229, and GBM8401 mRNA were applied to performed quantitative RT-PCR for detect Nrf2 gene expression in glioma cell lines. At last, immunohistochemical analysis was used to determine the expression of Nrf2 in samples from 178 PBTs and 10 non-neoplastic brain tissues. Results: In these included in vitro studies, both Nrf2 protein and mRNA expression in all human glioma cell lines were higher than normal brain tissue. Similarly, on the viewpoint of immunohistochemistry, Nrf2 expression in gliomas were positively correlated with World Health Organization (WHO) grades. Additionally, compared with the expression of Nrf2 in non-neoplastic brain tissue, expression in meningiomas was of a stronger intensity and was present in a higher percentage of cells. Furthermore, scores were significantly higher in WHO grade II than in WHO grade I meningiomas. Finally, overall survival tended to be shorter in patients whose PBTs had higher expression of Nrf2, although the correlation was not statistically significant. Conclusions: Nrf2 overexpression positively correlated with WHO grade in gliomas and meningiomas. On the other hand, Nrf2 immunohistochemical stain could help pathologists to differentiate atypical meningiomas from benign tumors. Therefore, Nrf2 expression may be a useful biomarker to predict WHO grade and cellular behavior of PBTs.  相似文献   

5.
To compare the fatty acid composition of tumor tissue from glioma patients with that of normal brain tissue, tissue samples were obtained from 13 glioma patients and from 3 nonmalignant patients. Following lipid extraction, total fatty acid composition was measured using gas-liquid chromatography. Samples were further separated into phospholipids and neutral lipids. Representative samples were then separated into phospholipid classes by thin-layer chromatography and the fatty acid composition assayed. Levels of the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA), were significantly reduced (P=0.029) in the glioma samples compared with normal brain samples; mean values were 4.8±2.9% and 9.2±1.0%, respectively. This reduction in glioma DHA content was also observed in terms of phospholipids (4.6±2.1% vs. 9.6±0.8%,P=0.002). The phosphatidylserine and phosphatidylethanolamine phospholipid classes were reduced in the glioma samples. Differences were also noted in the n-6 PUFA content between glioma and normal brain samples. The glioma content of the n-6 PUFA linoleic acid was significantly greater (P<0.05) than that observed in the control samples in terms of total lipids. Thus, the fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue.  相似文献   

6.
The A disintegrin and metalloproteinase 9 (ADAM9) protein has been suggested to promote carcinoma invasion and appears to be overexpressed in various human cancers. However, its role has rarely been investigated in gliomas and, thus, in the current study we have evaluated ADAM9 expression in gliomas and examined the relevance of its expression in the prognosis of glioma patients. Clinical characteristics, RNA sequence data, and the case follow-ups were reviewed for 303 patients who had histological, confirmed gliomas. The ADAM9 expression between lower-grade glioma (LGG) and glioblastoma (GBM) patients was compared and its association with progression-free survival (PFS) and overall survival (OS) was assessed to evaluate its prognostic value. Our data suggested that GBM patients had significantly higher expression of ADAM9 in comparison to LGG patients (p < 0.001, t-test). In addition, among the LGG patients, aggressive astrocytic tumors displayed significantly higher ADAM9 expression than oligodendroglial tumors (p < 0.001, t-test). Moreover, high ADAM9 expression also correlated with poor clinical outcome (p < 0.001 and p < 0.001, log-rank test, for PFS and OS, respectively) in LGG patients. Further, multivariate analysis suggested ADAM9 expression to be an independent marker of poor survival (p = 0.002 and p = 0.003, for PFS and OS, respectively). These results suggest that ADAM9 mRNA expression is associated with tumor grade and histological type in gliomas and can serve as an independent prognostic factor, specifically in LGG patients.  相似文献   

7.
Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.  相似文献   

8.
Due to the increasing incidence of malignant gliomas, particularly glioblastoma multiforme (GBM), a simple and reliable GBM diagnosis is needed to screen early the death-threaten patients. This study aimed to identify a protein that can be used to discriminate GBM from low-grade astrocytoma and elucidate further that it has a functional role during malignant glioma progressions. To identify proteins that display low or no expression in low-grade astrocytoma but elevated levels in GBM, glycoprotein fibronectin (FN) was particularly examined according to the mining of the Human Protein Atlas. Web-based open megadata minings revealed that FN was mainly mutated in the cBio Cancer Genomic Portal but dominantly overexpressed in the ONCOMINE (a cancer microarray database and integrated data-mining platform) in distinct tumor types. Furthermore, numerous different cancer patients with high FN indeed exhibited a poor prognosis in the PrognoScan mining, indicating that FN involves in tumor malignancy. To investigate further the significance of FN expression in glioma progression, tumor specimens from five malignant gliomas with recurrences that received at least two surgeries were enrolled and examined. The immunohistochemical staining showed that FN expression indeed determined the distinct progressions of malignant gliomas. Furthermore, the expression of vimentin (VIM), a mesenchymal protein that is strongly expressed in malignant cancers, was similar to the FN pattern. Moreover, the level of epithelial–mesenchymal transition (EMT) inducer transforming growth factor-beta (TGF-β) was almost recapitulated with the FN expression. Together, this study identifies a protein FN that can be used to diagnose GBM from low-grade astrocytoma; moreover, its expression functionally determines the malignant glioma progressions via TGF-β-induced EMT pathway.  相似文献   

9.
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.  相似文献   

10.
Gliomas are the most prevalent primary tumors of the brain and spinal cord. Histologically, they share features of normal glial cells, but whether gliomas originate from normal glial cells, glial or neural precursors, stem cells, or other cell types remains a topic of investigation. The enhanced expression of inducible nitric oxide synthase (iNOS) has been reported as a hallmark of chemoresistance in gliomas, and several lines of evidence have reported that a decreased proliferation of glioma cells could be related to the selective inhibition of iNOS. This review aims to summarize the current understanding of iNOS expression and activity modulation in the regulation of glioma pathogenesis, along with compounds that could act as therapeutic agents against glioma.  相似文献   

11.
A2B5 IgM recognizes c-series gangliosides with three sialic acids. The aim of this review was to focus on A2B5 expression in the central nervous system and gliomas. In brain development, A2B5+ cells are recorded in areas containing multipotent neural stem cells (NSC). In adults, A2B5+ cells persist in neurogenic areas and in white matter where it identifies oligodendrocyte precursor cells (OPCs) but also cells with NSC properties. Although the expression of A2B5 has been widely studied in culture, where it characterizes bipotential glial progenitor cells, its expression in vivo is less characterized mainly because of technical issues. A new interest was given to the NSCs and OPCs since the discovery of cancer stem cells (CSC) in gliomas. Among other cell surface molecules, A2B5 has been identified as an accurate marker to identify glioma CSCs. We and others have shown that all types of gliomas express A2B5, and that only A2B5+ cells, and not A2B5- cells, can generate a tumor after orthotopic implantation in immunocompromised animals. Moreover, A2B5 epitope expression is positively correlated with stemness and tumor growth. This review highlights that A2B5 is an attractive target to tackle glioma CSCs, and a better characterization of its expression in the developing and adult CNS will benefit to a better understanding of gliomagenesis.  相似文献   

12.
13.
In this study the effect of luminal lipid on the absorption of canthaxanthin (CTX) was investigated using the lymph duct cannulated rat. Treatments were emulsions designed to deliver increasing amounts of olive oil (10, 30, 50, 70, or 90 mg/h) and CTX (12.5 nmol/h). Emulsions were continuously infused into the duodenum for 12 h, and lymph was collected during the final 6 h of infusion for analysis. As the amount of lipid in the emulsion increased, a linear increase in the absorption of CTX was observed. The recovery of CTX in the lymph when infused with 10 mg/h olive oil was 14.2±1.2% and with 90 mg/h was 26.9±5.7%. The efficiency of CTX absorption nearly doubled by increasing the amount of lipid infused with CTX. The correlation between lipid load and CTX absorbed was r=0.85. We conclude that luminal lipid load affects CTX absorption.  相似文献   

14.
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.  相似文献   

15.
Previously, we showed that mice treated with cyclophosphamide (CTX) 4 days before intravenous injection of breast cancer cells had more cancer cells in the lung at 3 h after cancer injection than control counterparts without CTX. At 4 days after its injection, CTX is already excreted from the mice, allowing this pre-treatment design to reveal how CTX may modify the lung environment to indirectly affect cancer cells. In this study, we tested the hypothesis that the increase in cancer cell abundance at 3 h by CTX is due to an increase in the adhesiveness of vascular wall for cancer cells. Our data from protein array analysis and inhibition approach combined with in vitro and in vivo assays support the following two-prong mechanism. (1) CTX increases vascular permeability, resulting in the exposure of the basement membrane (BM). (2) CTX increases the level of matrix metalloproteinase-2 (MMP-2) in mouse serum, which remodels the BM and is functionally important for CTX to increase cancer abundance at this early stage. The combined effect of these two processes is the increased accessibility of critical protein domains in the BM, resulting in higher vascular adhesiveness for cancer cells to adhere. The critical protein domains in the vascular microenvironment are RGD and YISGR domains, whose known binding partners on cancer cells are integrin dimers and laminin receptor, respectively.  相似文献   

16.
Glioblastoma is the most common and fatal primary glioma and has a severe prognosis. It is a challenge for neurosurgeons to remove brain tumor tissues completely by resection. Meanwhile, fluorescence-guided surgery (FGS) is a technique used in glioma surgery to enhance the visualization of tumor edges to clarify the extent of tumor resection. Indocyanine green (ICG) is the only FDA-approved NIR fluorescent agent. It non-covalently binds to human serum albumin (HSA). Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in gliomas and binds to albumin, suggesting that it plays an important role in tumor uptake of the ICG-HSA complex. Here we demonstrate the binding properties of HSA or SPARC to ICG using surface plasmon resonance and saturation binding assay. According to in vitro and in vivo studies, the results showed that the uptake of ICG-HSA complex was higher in SPARC-expressing glioblastoma cell line and tumor region compared with the uptake of free ICG. Here, we visualized the SPARC-dependent uptake of ICG and ICG-HSA complex in U87MG. Our results demonstrated that the ICG-HSA complex is likely to be used as an efficient imaging agent targeting SPARC-expressing tumors, especially glioblastoma.  相似文献   

17.
Prior studies had shown the clinical efficacy of a semi-allogeneic glioma vaccine in mice with lethal GL261 gliomas. This was confirmed in the present study. As subcutaneous vaccination resulted in protection against tumor in the brain, the present study assessed the impact of this vaccination of mice bearing established GL261 brain gliomas on their cytokine production upon in vitro exposure to tumor-derived products. Mice with established GL261 brain gliomas were vaccinated subcutaneously with H-2b GL261 glioma cells fused with H-2d RAG-neo cells or with a mock vaccine of phosphate-buffered saline. The results of these analyses show that the presence of GL261 tumor-conditioned medium resulted in increased production of Th1, inflammatory and inhibitory cytokines by spleen cells from control mice and from vaccinated glioma-bearing mice. In contrast, spleen cells of tumor-bearing, mock-vaccinated mice produced lower levels of cytokines in the presence of tumor-conditioned media. However, these results also show that there was not a heightened level of cytokine production in the presence of tumor-conditioned medium by spleen cells of vaccinated mice over the production by spleen cells of control mice. Overall, these results show that vaccination slows growth of the GL261 tumors to the point where GL261-vaccinated mice do not show the signs of morbidly or splenic dysfunction exhibited by unvaccinated, late stage glioma-bearing mice.  相似文献   

18.
19.
Gliomas represent a wide spectrum of brain tumors characterized by their high invasiveness, resistance to chemoradiotherapy, and both intratumoral and intertumoral heterogeneity. Recent advances in transomics studies revealed that enormous abnormalities exist in different biological layers of glioma cells, which include genetic/epigenetic alterations, RNA expressions, protein expression/modifications, and metabolic pathways, which provide opportunities for development of novel targeted therapeutic agents for gliomas. Metabolic reprogramming is one of the hallmarks of cancer cells, as well as one of the oldest fields in cancer biology research. Altered cancer cell metabolism not only provides energy and metabolites to support tumor growth, but also mediates the resistance of tumor cells to antitumor therapies. The interactions between cancer metabolism and DNA repair pathways, and the enhancement of radiotherapy sensitivity and assessment of radiation response by modulation of glioma metabolism are discussed herein.  相似文献   

20.
Performance characteristics of a three electrolyte rechargeable acid–alkaline hybrid battery using a PbO2 positive plate and a nickel metal hydride (NiMHx) negative electrode in separate electrolyte of H2SO4 and KOH were studied. This hybrid battery has three electrolytes in a single cell. A neutral K2SO4 salt solution was placed between the acid and alkaline compartments of the cell, in which a cation exchange membrane and an anion exchange membrane, were employed to separate these three electrolytes. The open circuit voltage of this hybrid cell was found to be 2.64 V in an electrolyte configuration of 1 M H2SO4|0.2 M K2SO4|2 M KOH electrolyte configuration, compared to 1.92 V in the conventional lead-acid cell in 1 M H2SO4 and 1.40 V in a NiMHx cell in 2 M KOH. This hybrid acid–alkaline PbO2/NiMHx battery was shown to operate with a voltage 20% higher than the conventional lead acid battery and 110% higher than nickel–metal hydride battery at 1/3 C discharging rate. The concentrations of the three electrolytes, the dimension of the electrolyte chamber, and other cell/operation parameters with impacts on the hybrid cell performance were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号