首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
We report the potency against cancer stem cells (CSCs) of a new cobalt(III)‐cyclam complex ( 1 ) that bears the nonsteroidal anti‐inflammatory drug, naproxen. The complex displays selective potency for breast CSC‐enriched HMLER‐shEcad cells over breast CSC‐depleted HMLER cells. Additionally, it inhibited the formation of three‐dimensional tumour‐like mammospheres, and reduced their viability to a greater extent than clinically used breast cancer drugs (vinorelbine, cisplatin and paclitaxel). The anti‐mammosphere potency of 1 was enhanced under hypoxia‐mimicking conditions. Detailed mechanistic studies revealed that DNA damage and cyclooxygenase‐2 (COX‐2) inhibition contribute to the cytotoxic mechanism of 1 . To the best of our knowledge, 1 is the first cobalt‐containing compound to show selective potency for CSCs over bulk cancer cells.  相似文献   

2.
Metabolic reprogramming of cancer is now considered a hallmark of many malignant tumors, including breast cancer, which remains the most commonly diagnosed cancer in women all over the world. One of the main challenges for the effective treatment of breast cancer emanates from the existence of a subpopulation of tumor-initiating cells, known as cancer stem cells (CSCs). Over the years, several pathways involved in the regulation of CSCs have been identified and characterized. Recent research has also shown that CSCs are capable of adopting a metabolic flexibility to survive under various stressors, contributing to chemo-resistance, metastasis, and disease relapse. This review summarizes the links between the metabolic adaptations of breast cancer cells and CSC-associated pathways. Identification of the drivers capable of the metabolic rewiring in breast cancer cells and CSCs and the signaling pathways contributing to metabolic flexibility may lead to the development of effective therapeutic strategies. This review also covers the role of these metabolic adaptation in conferring drug resistance and metastasis in breast CSCs.  相似文献   

3.
Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.  相似文献   

4.
We report a new family of bis‐arylidene oxindole derivatives that show highly selective estrogen receptor (ER)‐mediated anticancer activity at low‐nanomolar concentrations in ER‐positive (ER+) breast cancer cells. In terms of cell growth inhibition, IC50 values for these compounds in ER+ breast cancer cells are two to three orders of magnitude lower than in ER‐negative (ER?) breast cancer cells and non‐cancer cells. In comparison with known bis‐arylidene drugs, these compounds are at least three orders of magnitude more toxic than tamoxifen and 1.5–4‐fold more toxic than 4‐hydroxytamoxifen in ER+ MCF‐7 cancer cells. These oxindoles inhibit ER transactivation, and their anticancer activities are inhibited in ER‐depleted MCF‐7 cells. Some of these nonsteroidal molecules also exhibit essential properties of selective ER down‐regulation. From the development of two series of bis‐arylidene oxindole‐based compounds, we report a new series of anticancer agents for estrogen‐responsive breast cancer.  相似文献   

5.
Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.  相似文献   

6.
The search for the "ideal" selective estrogen receptor modulator (SERM) as a substitute for hormone replacement therapy (HRT) or use in cancer chemoprevention has focused on optimization of estrogen receptor (ER) ligand binding. Based on the clinical and preclinical benzothiophene SERMs, raloxifene and arzoxifene, a family of SERMs has been developed to modulate activity and oxidative lability. Antiestrogenic potency measured in human endometrial and breast cancer cells, and ER ligand binding data were correlated and seen to provide a guide to SERM design only when viewed in toto. The in vitro studies were extended to the juvenile rat model, in which the desired antiestrogenic profile and putative cardiovascular benefits of SERMs were observed.  相似文献   

7.
Esters of 6-aminomethylnicotinic acid with various steroidal alcohols were treated with K(2)PtCl(4) to give the N,N-chelated dichloroplatinum(II) complex conjugates 4. Their interaction with plasmid DNA was monitored by electrophoretic mobility measurements. Their affinities towards sex hormone binding globulin (SHBG) and towards the nuclear estrogen receptor ER(alpha) were assessed by competitive displacement radioassays. The inhibitory effect of 4 on breast tumour cells MCF-7 ER(+)/ER(-) and MDA-MB-231 was investigated in vitro. Conjugates with 3-O-linked estrogens 4 a,b or 17-O-linked androgens 4 g bound strongly to SHBG. The conjugate complex 4 b, featuring a 3-O-linked estradiol, also bound strongly and agonistically to the estrogen receptor. It also elicited distinct growth retardation of MCF-7 (ER(+)) cells, presumably by a mechanism different from that of cisplatin.  相似文献   

8.
Chemo-resistance is the major cause of high mortality in head and neck squamous cell carcinomas (HNSCC) in which HNSCC-derived cancer stem cells (CSCs) may be involved. Previously, we enriched a subpopulation of HNSCC-derived spheroid cells (SC) (HNSCC-SC) and identified Nanog as a CSCs marker. The aim of this study was to determine the role of Nanog in the chemosensitivity of HNSCC. The functional and clinicopathological studies of Nanog were investigated in HNSCC cells and specimens. Nanog expression was increased in HNSCC cell lines as compared to a normal oral epithelial cell line. Nanog upregulation in clinical tissues from HNSCC patients with recurrent and metastatic specimens relative to the mRNA levels in the samples from normal or primary tissues were examined. Targeting Nanog in HNSCC-SC significantly inhibited their tumorigenic and CSCs-like abilities and effectively increased the sensitivity of HNSCC-SC to chemotherapeutic drug cisplatin treatment. Targeting Nanog in HNSCC-SC showed a synergistic therapeutic effect with cisplatin. Our results suggest that targeting Nanog may have promising therapeutic potential for HNSCC.  相似文献   

9.
Cancer stem cells (CSCs) can be induced from differentiated cancer cells in the tumor microenvironment or in response to treatments and exhibit chemo- and radioresistance, leading to tumor recurrence and metastasis. We previously reported that triple negative breast cancer (TNBC) cells with acquired radioresistance exhibited more aggressive features due to an increased CSC population. Therefore, here, we isolated CSCs from radiotherapy-resistant (RT-R)-TNBC cells and investigated the effects of these CSCs on tumor progression and NK cell-mediated cytotoxicity. Compared to MDA-MB-231 and RT-R-MDA-MB-231 cells, CD24−/low/CD44+ cells isolated from RT-R-MDA-MB-231 cells showed increased proliferation, migration and invasion abilities, and induced expression of tumor progression-related molecules. Moreover, similar to MDA-MB-231 cells, CD24−/low/CD44+ cells recruited NK cells but suppressed NK cell cytotoxicity by regulating ligands for NK cell activation. In an in vivo model, CD24−/low/CD44+ cell-injected mice showed enhanced tumor progression and lung metastasis via upregulation of tumor progression-related molecules and altered host immune responses. Specifically, NK cells were recruited into the peritumoral area tumor but lost their cytotoxicity due to the altered expression of activating and inhibitory ligands on tumors. These results suggest that CSCs may cause tumor evasion of immune cells, resulting in tumor progression.  相似文献   

10.
The high plasticity of cancer stem-like cells (CSCs) allows them to differentiate and proliferate, specifically when xenotransplanted subcutaneously into immunocompromised mice. CSCs are highly tumorigenic, even when inoculated in small numbers. Thus, in vivo limiting dilution assays (LDA) in mice are the current gold standard method to evaluate CSC enrichment and activity. The chick embryo chorioallantoic membrane (CAM) is a low cost, naturally immune-incompetent and reproducible model widely used to evaluate the spontaneous growth of human tumor cells. Here, we established a CAM-LDA assay able to rapidly reproduce tumor specificities—in particular, the ability of the small population of CSCs to form tumors. We used a panel of organotropic metastatic breast cancer cells, which show an enrichment in a stem cell gene signature, enhanced CD44+/CD24−/low cell surface expression and increased mammosphere-forming efficiency (MFE). The size of CAM-xenografted tumors correlate with the number of inoculated cancer cells, following mice xenograft growth pattern. CAM and mice tumors are histologically comparable, displaying both breast CSC markers CD44 and CD49f. Therefore, we propose a new tool for studying CSC prevalence and function—the chick CAM-LDA—a model with easy handling, accessibility, rapid growth and the absence of ethical and regulatory constraints.  相似文献   

11.
Gao J  Liu YG  Liu R  Zingaro RA 《ChemMedChem》2008,3(6):954-962
We report a new series of Herceptin-platinum(II) binding complexes, Her-nLPt(II) (Her denotes Herceptin; L denotes diamino ligands and L=L1-L4; n=1, 5, or 10). Solution chemistry studies have shown that these complexes are stable under physiological conditions (pH 7.4 in PBS). The platinum(II) compound L1Pt(II)Cl(2) inhibits the growth of a panel of human cancer cell lines at sub-micromolar concentrations. Remarkable cancer-cell-specific cytotoxicity was observed with Her-nL1Pt(II) (n=1, 5, 10) toward Her2/neu-overexpressing cancer cells (SK-BR-3 and SK-OV-3) over normal fibroblast cells. Annexin V apoptosis assays in SK-BR-3 and low-Her2/neu-expressing MCF-7 breast cancer cells further confirmed the critical role of Herceptin with this cancer-cell-specific agent. It was also found that the L1Pt(II)Cl(2) complex is an efficient regulator of the apoptotic genes Bcl-2 in the treated SK-BR-3 cells. Also, enhanced regulatory effects were observed in Her-10L1Pt(II). Taken together, this study suggests a new approach for the development of mAb-platinum(II)-based targeting agents for the treatment of human cancers.  相似文献   

12.
Potential antiproliferative effects of tocotrienols, the major vitamin E component in palm oil, were investigated on the growth of both estrogen-responsive (ER+) MCF7 human breast cancer cells and estrogen-unresponsive (ER-) MDA-MD-231 human breast cancer cells, and effects were compared with those of α-tocopherol (αT). The tocotrienol-rich fraction (TRF) of palm oil inhibited growth of MCF7 cells in both the presence and absence of estradiol with a nonlinear dose-response but such that complete suppression of growth was achieved at 8 μg/mL. MDA-MB-231 cells were also inhibited by TRF but with a linear dose-response such that 20 μg/mL TRF was needed for complete growth suppression. Separation of the TRF into individual tocotrienols revealed that all fractions could inhibit growth of both ER+ and ER- cells and of ER+ cells in both the presence and absence of estradiol. However, the γ- and δ-fractions were the most inhibitory. Complete inhibition of MCF7 cell growth was achieved at 6 μg/mL of γ-tocotrienol/δ-tocotrienol (γT3/δT3) in the absence of estradiol and 10μm/mL of δT3 in the presence of estradiol, whereas complete suppression of MDA-MB-231 cell growth was not achieved even at concentrations of 10μg/mL of δT3. By contrast to these inhibitory effects of tocotrienols, αT had no inhibitory effect on MCF7 cell growth in either the presence or the absence of estradiol, nor on MDA-MB-231 cell growth. These results confirm studies using other sublines of human breast cancer cells and demonstrate that tocotrienols can exert direct inhibitory effects on the growth of breast cancer cells. In searching for the mechanism of inhibition, studies of the effects of TRF on estrogen-regulated pS2 gene expression in MCF7 cells showed that tocotrienols do not act via an estrogen receptor-mediated pathway and must therefore act differently from estrogen antagonists. Furthermore, tocotrienols did not increase levels of growth-inhibitory insulin-like growth factor binding proteins (IGFBP) in MCF7 cells, implying also a different mechanism from that proposed for retinoic acid inhibition of estrogen-responsive breast cancer cell growth. Inhibition of the growth of breast cancer cells by tocotrienols could have important clinical implications not only because tocotrienols are able to inhibit the growth of both ER+ and ER- phenotypes but also because ER+ cells could be growth-inhibited in the presence as well as in the absence of estradiol. Future clinical applications of TRF could come from potential growth suppression of ER+ breast cancer cells otherwise resistant to growth inhibition by antiestrogens and retinoic acid.  相似文献   

13.
The concept of the existence of a subset of cancer cells with stem cell-like properties, which are thought to play a significant role in tumor formation, metastasis, resistance to anticancer therapies and cancer recurrence, has gained tremendous attraction within the last decade. These cancer stem cells (CSCs) are relatively rare and have been described by different molecular markers and cellular features in different types of cancers. Ten years ago, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. These small RNAs, which are called microRNAs (miRNAs), act as endogenous suppressors of gene expression that exert their effect by binding to the 3′-untranslated region (UTR) of large target messenger RNAs (mRNAs). MicroRNAs trigger either translational repression or mRNA cleavage of target mRNAs. Some studies have shown that putative breast cancer stem cells (BCSCs) exhibit a distinct miRNA expression profile compared to non-tumorigenic breast cancer cells. The deregulated miRNAs may contribute to carcinogenesis and self-renewal of BCSCs via several different pathways and can act either as oncomirs or as tumor suppressive miRNAs. It has also been demonstrated that certain miRNAs play an essential role in regulating the stem cell-like phenotype of BCSCs. Some miRNAs control clonal expansion or maintain the self-renewal and anti-apoptotic features of BCSCs. Others are targeting the specific mRNA of their target genes and thereby contribute to the formation and self-renewal process of BCSCs. Several miRNAs are involved in epithelial to mesenchymal transition, which is often implicated in the process of formation of CSCs. Other miRNAs were shown to be involved in the increased chemotherapeutic resistance of BCSCs. This review highlights the recent findings and crucial role of miRNAs in the maintenance, growth and behavior of BCSCs, thus indicating the potential for novel diagnostic, prognostic and therapeutic miRNA-based strategies.  相似文献   

14.
Complexes of 2-(4-thiazolyi)benzimidazole (thiabendazole, THBD) with Co(II), Ni(II), Cu(ll) of general formula ML(2)(NO(3))(2) H(2)O and complexes of Pd(II) and Pt(II) of general formula ML2Cl(2) H(2)O have been obtained and characterized by elemental analyses, IR and far IR spectroscopy and magnetic measurements. The X-ray crystal structure of the copper(II) complex has been determined. The in vitro cell proliferation inhibitory activity of these compounds was examined against human cancer cell lines A 549 (lung carcinoma), HCV-29 T (urinary bladder carcinoma), MCF-7 (breast cancer), T47D (breast cancer), MES-SA (uterine carcinoma) and HL-60 (promyelocytic leukemia). Pt-THBD has been found to exhibit an antileukemic activity of the HL-60 line cells matching that of an arbitrary criterion.  相似文献   

15.
Resistance to cancer treatment is one of the major challenges currently faced when treating gastrointestinal (GI) cancers. A major contributing factor to this resistance is the presence of cancer stem cells (CSCs) in GI cancers (e.g., colorectal, pancreatic, gastric, liver cancer). Non-coding RNAs, such as microRNAs (miRNAs), have been found to regulate several key targets that are responsible for cancer stemness, and function as oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs. As a result, several miRNAs have been found to alter, or be altered by, the expression of CSC-defining markers and their related pathways. These miRNAs can be utilized to affect stemness in multiple ways, including directly targeting CSCs and enhancing the efficacy of cancer therapeutics. This review highlights current studies regarding the roles of miRNAs in GI CSCs, and efforts towards the development of cancer therapeutics.  相似文献   

16.
17.
Derivatives of usnic acid (UA), a secondary metabolite from lichens, were synthesized to improve its anticancer activity and selectivity. Recently we reported the synthesis and activity of an UA isoxazole derivative, named 2b, against cancer cells of different origins. Herein, the molecular mechanisms underlying its activity and efficacy in vivo were tested. The viability of breast cancer or normal cells has been tested using an MTT assay. Cell and organelle morphology was analyzed using light, electron and fluorescence microscopy. Gene expression was evaluated by RNAseq and protein levels were evaluated by Western blotting. In vivo anticancer activity was evaluated in a mice xenograft model. We found that 2b induced massive vacuolization which originated from the endoplasmic reticulum (ER). ER stress markers were upregulated both at the mRNA and protein levels. ER stress was caused by the release of Ca2+ ions from the ER by IP3R channels which was mediated, at least partly, by phospholipase C (PLC)-synthetized 1,4,5-inositol triphosphate (IP3). ER stress led to cell death with features of apoptosis and paraptosis. When applied to nude mice with xenografted breast cancer cells, 2b stopped tumour growth. In mice treated with 2b, vacuolization was observed in tumour cells, but not in other organs. This study shows that the antiproliferative activity of 2b relates to the induction of ER stress in cancer, not in healthy, cells and it leads to breast cancer cell death in vitro and in vivo.  相似文献   

18.
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.  相似文献   

19.
Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.  相似文献   

20.
Estrogen receptor‐α (ER) antagonists have been widely used for breast cancer therapy. Despite initial responsiveness, hormone‐sensitive ER‐positive cancer cells eventually develop resistance to ER antagonists. It has been shown that in most of these resistant tumor cells, the ER is expressed and continues to regulate tumor growth. Recent studies indicate that tamoxifen initially acts as an antagonist, but later functions as an ER agonist, promoting tumor growth. This suggests that targeted ER degradation may provide an effective therapeutic approach for breast cancers, even those that are resistant to conventional therapies. With this in mind, we previously demonstrated that proteolysis targeting chimeras (PROTACs) effectively induce degradation of the ER as a proof‐of‐concept experiment. Herein we further refined the PROTAC approach to target the ER for degradation. The ER‐targeting PROTACs are composed of an estradiol on one end and a hypoxia‐inducing factor 1α (HIF‐1α)‐derived synthetic pentapeptide on the other. The pentapeptide is recognized by an E3 ubiquitin ligase called the von Hippel Lindau tumor suppressor protein (pVHL), thereby recruiting the ER to this E3 ligase for ubiquitination and degradation. Specifically, the pentapeptide is attached at three different locations on estradiol to generate three different PROTAC types. With the pentapeptide linked through the C7α position of estradiol, the resulting PROTAC shows the most effective ER degradation and highest affinity for the estrogen receptor. This result provides an opportunity to develop a novel type of ER antagonist that may overcome the resistance of breast tumors to conventional drugs such as tamoxifen and fulvestrant (Faslodex).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号