首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为改进生物法生产丙烯酰胺工艺,研究了腈水合酶催化丙烯腈水合生产丙烯酰胺过程中影响腈水合酶反应速率和酶失活的因素. 实验证明,水合过程中体系pH值的变化基本不影响酶反应速率;底物丙烯腈的浓度低于10 g/L时,酶反应速率与底物浓度成正比,大于75 g/L后,对酶有抑制作用;产物丙烯酰胺显著抑制腈水合酶的活性;菌体细胞内可能存在可以稳定腈水合酶的物质,胞内的腈水合酶在40℃下的半衰期可以达到59.9 h;丙烯酰胺与温度的协同作用是腈水合酶失活的重要原因.  相似文献   

2.
Nitrile reductases are considered to be promising and environmentally benign nitrile‐reducing biocatalysts to replace traditional metal catalysts. Unfortunately, the catalytic efficiencies of the nitrile reductases reported so far are very low. To date, all attempts to increase the catalytic activity of nitrile reductases by protein engineering have failed. In this work, we successfully increased the specific activity of a nitrile reductase from Pectobacterium carotovorum from 354 to 526 U gprot?1 by engineering the substrate binding pocket; moreover, the thermostability was also improved (≈2‐fold), showing half‐lives of 140 and 32 h at 30 and 40 °C, respectively. In the bioreduction of 2‐amino‐5‐cyanopyrrolo[2,3‐d]pyrimidin‐4‐one (preQ0) to 2‐amino‐5‐aminomethylpyrrolo[2,3‐d]pyrimidin‐4‐one (preQ1), the variant was advantageous over the wild‐type enzyme with a higher reaction rate and complete conversion of the substrate within a shorter period. Homology modeling and docking analysis revealed some possible origins of the increased activity and stability. These results establish a solid basis for future engineering of nitrile reductases to increase the catalytic efficiency further, which is a prerequisite for applying these novel biocatalysts in synthetic chemistry.  相似文献   

3.
极端条件驯化法提高腈水合酶产生菌的丙烯酰胺耐受性   总被引:3,自引:1,他引:2  
为了提高产腈水合酶的菌体Nocardia sp.对催化产物丙烯酰胺的耐受性,利用极端条件改造了现有的丙烯酰胺生产菌株RS,通过向发酵液间歇加入丙烯腈催化生成丙烯酰胺,为菌体制造出一个极端环境,使菌体在生长催化过程中逐渐适应高浓度丙烯酰胺,强化其丙烯酰胺耐受性,驯化得到了RS-1菌株. 研究了驯化过程中菌体存活率、比死亡速率和腈水合酶活性随丙烯酰胺浓度的变化. 在不同的丙烯酰胺初始浓度(0~400 g/L)下比较了两菌株的丙烯酰胺耐受性,RS-1菌体催化丙烯腈水合的速率都大于RS菌体,平均提高30.8%;而且RS-1菌株的胞内腈水合酶也具有较好的丙烯酰胺耐受性. 在相同的水合条件下,RS-1菌株催化所得的丙烯酰胺终浓度和丙烯腈转化率分别为587.1 g/L和99.97%,都明显优于RS菌株的水合结果. 在进一步的水合实验中,RS-1菌株催化所得的丙烯酰胺终浓度达到了641.4 g/L.  相似文献   

4.
Asymmetric bioreduction of an (E)‐β‐cyano‐2,4‐dienoic acid derivative by ene‐reductases allowed a shortened access to a precursor of pregabalin [(S)‐3‐(aminomethyl)‐5‐methylhexanoic acid] possessing the desired configuration in up to 94% conversion and >99% ee. Deuterium labelling studies showed that the nitrile moiety was the preferred activating/anchor group in the active site of the enzyme over the carboxylic acid or the corresponding methyl ester.

  相似文献   


5.
NADPH‐dependent oxidoreductase Q1EQE0 from Streptomyces kanamyceticus catalyzes the asymmetric reduction of the prochiral monocyclic imine 2‐methyl‐1‐pyrroline to the chiral amine (R)‐2‐methylpyrrolidine with >99 % ee, and is thus of interest as a potential biocatalyst for the production of optically active amines. The structures of Q1EQE0 in native form, and in complex with the nicotinamide cofactor NADPH have been solved and refined to a resolution of 2.7 Å. Q1EQE0 functions as a dimer in which the monomer consists of an N‐terminal Rossman‐fold motif attached to a helical C‐terminal domain through a helix of 28 amino acids. The dimer is formed through reciprocal domain sharing in which the C‐terminal domains are swapped, with a substrate‐binding cleft formed between the N‐terminal subunit of monomer A and the C‐terminal subunit of monomer B. The structure is related to those of known β‐hydroxyacid dehydrogenases, except that the essential lysine, which serves as an acid/base in the (de)protonation of the nascent alcohol in those enzymes, is replaced by an aspartate residue, Asp187 in Q1EQE0. Mutation of Asp187 to either asparagine or alanine resulted in an inactive enzyme.  相似文献   

6.
In recent years, Old Yellow Enzymes (OYEs) and their homologues have found broad application in the efficient asymmetric hydrogenation of activated C?C bonds with high selectivities and yields. Members of this class of enzymes have been found in many different organisms and are rather diverse on the sequence level, with pairwise identities as low as 20 %, but they exhibit significant structural similarities with the adoption of a conserved (αβ)8‐barrel fold. Some OYEs have been shown not only to reduce C?C double bonds, but also to be capable of reducing nitro groups in both saturated and unsaturated substrates. In order to understand this dual activity we determined and analyzed X‐ray crystal structures of NerA from Agrobacterium radiobacter, both in its apo form and in complex with 4‐hydroxybenzaldehyde and with 1‐nitro‐2‐phenylpropene. These structures, together with spectroscopic studies of substrate binding to several OYEs, indicate that nitro‐containing substrates can bind to OYEs in different binding modes, one of which leads to C?C double bond reduction and the other to nitro group reduction.  相似文献   

7.
8.
The biochemical properties of Escherichia coli thioesterase I, His-tagged (HT) on the C-terminal, were systematically analyzed and compared with that without the His-tag (WT). These two types of enzymes exhibit similar optimal temperature and pH dependence, but subtle differences were detected. Kinetic studies revealed that the k car/JK m values of the HT enzyme for the substrates palmitoyl-CoA and p-nitrophenyl dodecanoate were 36- and 10-fold lower than those of the WT, respectively. In contrast, HT had a fivefold increased catalytic efficiency for p-nitrophenyl acetate, and up to fourfold increases toward phenylalanine- and tyrosine-derived ester substrates, l-NBPNPE (N-carbobenzoxy-l-phenylalanine p-nitrophenyl ester) and l-NBTNPE (N-carbobenzoxyl-l-tyrosine p-nitrophenyl ester), respectively. For l-NBPNPE and l-NBTNPE, the increases were attributed to the higher k cat values with little changes in K m, whereas the increase for p-nitrophenyl acetate was mainly attributed to the lower K m value. It is concluded that addition of six hydrophilic histidine residues on the C-terminus resulted in a change in substrate specificity of E. coli thioesterase I toward more hydrophilic substrates.  相似文献   

9.
The haloperoxidase family of alpha/beta-hydrolases contains enzymes of several different catalytic activities, including esterases, C--C hydrolases and cofactor-independent haloperoxidases (perhydrolases), but the molecular basis of this catalytic promiscuity is not fully understood. The C--C hydrolase enzyme MhpC from E. coli is shown to possess esterase and thioesterase activity, and the ability to activate hydroxylamine as a nucleophile to form hydroxamic acid products. The ratio of these activities was examined for nine site-directed mutant enzymes that contained mutations at nonessential residues in the enzyme active site. Higher levels of esterase and thioesterase activity were found in mutants Phe173Gly and Trp264Gly; this might be due to increased amounts of space in the active site. Higher levels of hydroxamic acid formation activity were found in mutant Asn109His-a mutation found in many haloperoxidase enzymes. Wild-type and mutant MhpC enzymes were also capable of C--C bond formation in organic solvents, and the highest activity was observed in nonpolar solvents. The results provide experimental support for the catalytic promiscuity shown in this family of enzymes, and indicate that differences in catalytic function can be introduced by point mutations.  相似文献   

10.
The antimicrobial activity of nanoparticles (NPs) is a desirable feature of various products but can become problematic when NPs are released into different ecosystems, potentially endangering living microorganisms. Although there is an abundance of advanced studies on the toxicity and biological activity of NPs on microorganisms, the information regarding their detailed interactions with microbial cells and the induction of oxidative stress remains incomplete. Therefore, this work aimed to develop accurate oxidation stress profiles of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis strains treated with commercial Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs. The methodology used included the following determinations: toxicological parameters, reactive oxygen species (ROS), antioxidant enzymes and dehydrogenases, reduced glutathione, oxidatively modified proteins and lipid peroxidation. The toxicological studies revealed that E. coli was most sensitive to NPs than B. cereus and S. epidermidis. Moreover, NPs induced the generation of specific ROS in bacterial cells, causing an increase in their concentration, which further resulted in alterations in the activity of the antioxidant defence system and protein oxidation. Significant changes in dehydrogenases activity and elevated lipid peroxidation indicated a negative effect of NPs on bacterial outer layers and respiratory activity. In general, NPs were characterised by very specific nano-bio effects, depending on their physicochemical properties and the species of microorganism.  相似文献   

11.
Palladium‐catalyzed coupling reactions have become a central tool for the synthesis of biologically active compounds both in academia and industry. Most of these transformations make use of easily available substrates and allow for a shorter and more selective preparation of substituted arenes and heteroarenes compared to non‐catalytic pathways. Notably, molecular‐defined palladium catalysts offer high chemoselectivity and broad functional group tolerance. Considering these advantages, it is not surprising that several palladium‐catalyzed coupling reactions have been implemented in the last decade into the industrial manufacture of pharmaceuticals and fine chemicals. In this review different examples from 2001–2008 are highlighted, which have been performed at least on a kilogram scale in the chemical and pharmaceutical industries.  相似文献   

12.
Cationic antimicrobial peptides have attracted interest, both as antimicrobial agents and for their ability to increase cell permeability to potentiate other antibiotics. However, toxicity to mammalian cells and complexity have hindered development for clinical use. We present the design and synthesis of very short cationic peptides (3–9 residues) with potential dual bacterial membrane permeation and efflux pump inhibition functionality. Peptides were designed based upon in silico similarity to known active peptides and efflux pump inhibitors. A number of these peptides potentiate the activity of the antibiotic novobiocin against susceptible Escherichia coli and restore antibiotic activity against a multi-drug resistant E. coli strain, despite having minimal or no intrinsic antimicrobial activity. Molecular modelling studies, via docking studies and short molecular dynamics simulations, indicate two potential mechanisms of potentiating activity; increasing antibiotic cell permeation via complexation with novobiocin to enable self-promoted uptake, and binding the E. coli RND efflux pump. These peptides demonstrate potential for restoring the activity of hydrophobic drugs.  相似文献   

13.
Phosphotriesterase from Pseudomonas diminuta (PTE) is an extremely efficient metalloenzyme that hydrolyses a variety of compounds including organophosphorus nerve agents. Study of PTE has been hampered by difficulties with efficient expression of the recombinant form of this highly interesting and potentially useful enzyme. We identified a low-level esterolytic activity of PTE and then screened PTE gene libraries for improvements in 2-naphthyl acetate hydrolysis. However, the attempt to evolve this promiscuous esterase activity led to a variant (S5) containing three point mutations that resulted in a 20-fold increase in functional expression. Interestingly, the zinc holoenzyme form of S5 appears to be more sensitive than wild-type PTE to both thermal denaturation and addition of metal chelators. Higher functional expression of the S5 variant seems to lie in a higher stability of the metal-free apoenzyme. The results obtained in this work point out another-and often overlooked-possible determinant of protein expression and purification yields, i.e. the stability of intermediates during protein folding and processing.  相似文献   

14.
The use of platinum‐catalyzed hydrosilylation chemistry of silicones greatly simplifies the preparation of bis‐oxazoline (box) ligands covalently bound to an insoluble polymeric support. The use of such immobilized chiral ligands in different copper‐catalyzed asymmetric transformations (carbonyl‐ene, Mukaiyama aldol and olefin cyclopropanation reactions) allows the attainment of high levels of enantioselectivity (91–99 % ee).  相似文献   

15.
A stereoselective α‐vinylation of cycloaliphatic ketones with arylacetylenes under the transition metal‐free conditions has been developed. The reaction is promoted by the superbasic catalytic triad potassium hydroxide/tert‐butyl alcohol/dimethyl sulfoxide (80–110 °C, 1–2 h) to afford mainly (E)‐β,γ‐ethylenic ketones, their (E)‐α,β‐isomers being minor products, in up to 83% total yield.  相似文献   

16.
The production of the trimethoprim-resistant type SI dihydrofolatereductase (DHFR) from Staphylococcus aureus in Escherichia colicells overproducing the chaperonins GroEL and GroES is described.The simultaneous overproduction of the chaperonins with DHFRresults in an increased solubility of the enzyme. We comparethe time course of production of active type SI DHFR by measuringenzyme activity in cells overproducing or not overproducingthe chaperonins. Although co-overproduction of the chaperoninsreduces the total production level of type S1 DHFR, the amountof soluble and active DHFR is increased several-fold in comparisonwith cells producing only DHFR. Thus, the higher concentrationsof GroES and GroEL in cells overproducing the chaperonins partiallyprotect DHFR from aggregation, resulting in higher concentrationsof soluble and active DHFR in the cell. Furthermore, we alsodemonstrate that the chaperonins can improve in vitro refoldingyields of type S1 DHFR. These results suggest that it is possibleto purify suitable amounts of trimethoprim-res stant type SIDHFR for X-ray crystallographic studies.  相似文献   

17.
Natural product peptide‐based proteasome inhibitors show great potential as anticancer drugs. Here we have cloned the biosynthetic gene cluster of a potent proteasome inhibitor—glidobactin from Burkholderia DSM7029—and successfully detected glidobactins/luminmycins in E. coli Nissle. We have also improved the yield of glidobactin A tenfold by promoter change in a heterologous host. In addition, two new biosynthetic intermediates were identified by comparative MS/MS fragmentation analysis. Identification of acyclic luminmycin E implies substrate specificity of the TE domain for cyclization. The establishment of a heterologous expression system for syrbactins provided the basis for the generation of new syrbactins as proteasome inhibitors by molecular engineering, but the TE domain's specificity cannot be ignored.  相似文献   

18.
We have developed an efficient and eco‐chemical process for the allylation of carbon pronucleophiles with alkynes. The reaction of alkynes with various active methynes and methylenes in the presence of Pd(PPh3)4/acetic acid gave the corresponding allylated products in high yields and high regioselectivities. In the present catalytic system, the key is the use of carboxylic acid which dramatically enhances the rate of the reactions. One of the important features of this process is that neither a leaving group is liberated nor is a stoichiometric amount of base needed to generate the nucleophiles.  相似文献   

19.
The utility for carbon‐carbon bond formation of a multienzyme system composed of recombinant dihydroxyacetone kinase (DHAK) from Citrobacter freundii, the fructose bisphosphate aldolase from rabbit muscle (RAMA) and acetate kinase (AK) for adenosine triphosphate (ATP) regeneration has been studied. Several aldehydes with great structural diversity, including three α,β‐unsaturated aldehydes, have been analysed as acceptor substrates. It was found that α,β‐unsaturated aldehydes bearing an electron‐withdrawing group in the β position to the double bond with a trans configuration are good acceptors for RAMA in this multienzyme system. The aldol reaction proceeds with excellent D ‐threo enantioselectivity and the aldol adduct is obtained in good overall yield. The L ‐threo and D ‐erythro enantiomers are also accessible from rhamnulose 1‐phosphate aldolase (Rha‐1PA) and fuculose 1‐phosphate aldolase (Fuc‐1PA) catalysed reactions, respectively.  相似文献   

20.
Blocking the adherence of bacteria to cells is an attractive complementary approach to current antibiotic treatments, which are faced with increasing resistance. This strategy has been particularly studied in the context of urinary tract infections (UTIs), in which the adhesion of pathogenic Escherichia coli strains to uroepithelial cells is prevented by blocking the FimH adhesin expressed at the tips of bacteria organelles called fimbriae. Recently, we extended the antiadhesive concept, showing that potent FimH antagonists can block the attachment of adherent‐invasive E. coli (AIEC) colonizing the intestinal mucosa of patients with Crohn′s disease (CD). In this work, we designed a small library of analogues of heptyl mannoside (HM), a previously identified nanomolar FimH inhibitor, but one that displays poor antiadhesive effects in vivo. The anomeric oxygen atom was replaced by a sulfur or a methylene group to prevent hydrolysis by intestinal glycosidases, and chemical groups were attached at the end of the alkyl tail. Importantly, a lead compound was shown to reduce AIEC levels in the feces and in the colonic and ileal mucosa after oral administration (10 mg kg?1) in a transgenic mouse model of CD. The compound showed a low bioavailability, preferable in this instance, thus suggesting the possibility of setting up an innovative antiadhesive therapy, based on the water‐soluble and non‐cytotoxic FimH antagonists developed here, for the CD subpopulation in which AIEC plays a key role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号