共查询到20条相似文献,搜索用时 0 毫秒
1.
建立了考虑外部有限速率传热过程和热源间热漏的不可逆半导体固态热离子制冷器模型,基于非平衡热力学和有限时间热力学理论导出了热离子制冷器的制冷率和制冷系数的表达式;对比分析了不可逆热离子制冷器与可逆热离子制冷器的发射电流密度特性、电极温度特性以及制冷系数特性;研究了不可逆系统的制冷率与制冷系数最优性能,得到了制冷率和制冷系数的最优运行区间;通过数值计算,详细讨论了外部传热以及内部导热、热源间热漏损失、热源温度、外加电压、半导体材料势垒等设计参数对热离子装置性能的影响。在总传热面积一定的条件下,进一步优化了高、低温侧换热器的面积分配以获得最佳的制冷率和制冷系数特性。结果表明,由于存在内部和外部的不可逆性,热离子装置的发射电流密度及制冷系数都会明显降低;不可逆半导体固态热离子制冷器的制冷率与制冷系数特性呈扭叶型;合理地选外加电压、势垒等参数,可以使制冷器设计于最大制冷率或最大制冷系数的状态。 相似文献
2.
3.
4.
喷射式制冷系统工质研究 总被引:5,自引:1,他引:4
喷射式制冷系统的性能在很大程度上取决于制冷工质的选择.为了比较新的无污染工质对喷射式制冷系统的影响,建立了喷射式制冷系统分析和工质热物性计算的简单模型,研究了有无回热两种情况下不同工作温度时工质对系统性能的影响. 相似文献
5.
Jahar Sarkar 《国际能源研究杂志》2013,37(2):121-128
Use of thermoelectric subcooler is one of the techniques to improve the performance of transcritical CO2 cycle. Thermodynamic analyses and optimizations of transcritical CO2 refrigeration cycle with thermoelectric subcooler are presented in this paper. Further, the effects of various operating parameters on cycle performances are studied. It is possible to optimize current supply, discharge pressure, and CO2 subcooling simultaneously based on maximum cooling COP for thermoelectrically enhanced transcritical CO2 refrigeration cycle to get best performance. Results show that thermoelectric current supply, COP improvement, and discharge pressure reduction increase with increase in cycle temperature lift, with maximum values of 11 A, 25.6%, and 15.4%, respectively, for studied ranges. Use of thermoelectric subcooler in CO2 refrigeration system not only improves the cooling COP, also reduces the system high‐side pressure, compressor pressure ratio, and compressor discharge temperature, and enhances the volumetric cooling capacity. Component‐wise irreversibility distribution shows similar trend with basic CO2 cycle, although values are lower leading to higher second law efficiency. Cooling capacity may be enhanced by increasing the current supply for the same thermoelectric configuration with penalty of COP. Study reveals that thermoelectrically enhanced CO2 refrigeration cycle yields significant performance improvement especially for higher‐cycle temperature lift. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
The performances of endoreversible Carnot refrigeration and heat pump cycles with loss of heat resistance and finite piston speeds are analysed and optimized by using the combination of finite time thermodynamics, finite speed thermodynamics and direct method. The unequal finite piston speed model on four branches is adopted. Expressions of cooling load of endoreversible Carnot refrigeration cycle and of heating load of endoreversible Carnot heat pump cycle are derived with a fixed cycle period and unequal finite piston speeds on the four branches. Numerical examples show that there exist optimal expansion ratios, which lead to maximum cooling load and maximum heating load for the fixed coefficient of performance (COP), respectively. The maximum cooling load, maximum heating load, optimal ratios of finite piston speeds and optimal hot- and cold-side working fluid temperatures versus COP characteristics for the endoreversible Carnot refrigeration and heat pump cycles are obtained. Moreover, the effects of design parameters on the performances of the two cycles are discussed. 相似文献
7.
Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling 总被引:1,自引:0,他引:1
Hailei Wang Richard PetersonKevin Harada Erik MillerRobbie Ingram-Goble Luke FisherJames Yih Chris Ward 《Energy》2011,36(1):447-458
Heat activated cooling has the potential of utilizing thermal sources that currently go unused such as engine exhaust heat or industrial waste heat. Using these heat sources can provide enhanced energy utilization and reduced fuel usage in applications where cooling is needed. The concept developed here uses waste heat from stationary and mobile engine cycles to generate cooling for structures and vehicles. It combines an organic Rankine cycle (ORC) with a conventional vapor compression cycle. A nominal 5 kW cooling capacity prototype system was developed based on this concept and tested under laboratory conditions. In order to maintain high system performance while reducing size and weight for portable applications, microchannel based heat transfer components and scroll based expansion and compression were used. Although the system was tested off of its design point, it performed well achieving 4.4 kW of cooling at a measured heat activated COP of 0.48. Both the conversion and 2nd law efficiencies were close to the model results, proving it to be an attractive technology. The measured isentropic efficiency of the scroll expander reached 84%, when the pressure ratio was close to the scroll intrinsic expansion ratio. The reduced cooling capacity was attributed to off design operation. 相似文献
8.
G. K. Alexis 《国际能源研究杂志》2005,29(2):95-105
Exergy is based on the second law of thermodynamics and is the only rational basis for evaluating the system performance. The aim of this paper is to study in detail the irreversibilities in the steam‐ejector refrigeration system. The influence of the cycle parameters is analysed on the basis of the first and second law and the results indicated the components with the greater irreversibility. A better quality of the ejector has more effect on the system performance than the better quality of other components, because the ejector at first and the condenser at second have the greater exergy loss of the system. For the refrigeration system the maximum coefficient of performance varying between 0.4 to 0.6 and the second law efficiency remains close to 0.17 for generator pressure 6 bar, condenser temperature 44–50°C and evaporator temperature 4–8°C. Also the study showed that the second law analysis quantitatively visualizes losses within a system and gives clear trends for optimization. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
9.
太阳能冷管的研究及其进展 总被引:3,自引:0,他引:3
太阳能冷管以沸石分子筛—水为工质对,在一根玻璃管内完成吸附式制冷循环,一根冷管即为一个制冷单元,成功地解决了太阳能吸附式制冷技术难以转化为成果的问题。本文综述了作者近几年来对太阳能冷管首创性提出,以及其结构性能的研制和改进情况。采用真空集热方式和选择性涂层加强冷管对太阳能的吸收,采用整体固化复合吸附剂提高吸附床的吸附和脱附性能。本文还介绍了已制作的三代太阳能冷管型制冷系统的试验样机,在单一提供制冷的基础上,提出了既可以制冷又可以供热水的多功能太阳能冷管。目前,实验结果表明,最新的多功能太阳能冷管COP可达0.268,太阳能制冷与供热的总效率可达87.7%。 相似文献
10.
The study introduced a novel thermally activated cooling concept - a combined cycle couples an ORC (organic Rankine cycle) and a VCC (vapor compression cycle). A brief comparison with other thermally activated cooling technologies was conducted. The cycle can use renewable energy sources such as solar, geothermal and waste heat, to generate cooling and power if needed. A systematic design study was conducted to investigate effects of various cycle configurations on overall cycle COP. With both subcooling and cooling recuperation in the vapor compression cycle, the overall cycle COP reaches 0.66 at extreme military conditions with outdoor temperature of 48.9 °C. A parametric trade-off study was conducted afterwards in terms of performance and weight, in order to find the most critical design parameters for the cycle configuration with both subcooling and cooling recuperation. Five most important design parameters were selected, including expander isentropic efficiency, condensing and evaporating temperatures, pump/boiling pressure and recuperator effectiveness. At the end, two additional cycle concepts with either potentially higher COP or practical advantages were proposed. It includes adding a secondary heat recuperator in the ORC side and using different working fluids in the power and cooling cycles, or so-called dual-fluid system. 相似文献
11.
12.
喷射式制冷系统工质研究 总被引:2,自引:0,他引:2
喷射式制冷系统的性能在很大程度上取决于制冷工质的选择。为了比较新的无污染工质对喷射式制冷系统的影响,建立了喷射式制冷系统分析和工质热物性计算的简单模型,研究了有无回热两种情况下不同工作温度时工质对系统性能的影响。 相似文献
13.
14.
The maximum possible specific cooling load that can be obtained from two-heart-reservoir refrigerators with a set of high-temperature heat sinks and low-temperature heat sources is analyzed. The refrigerators considered in this paper include (1) externally and internally reversible, (2) externally irreversible and internally reversible, (3) externally reversible and internally irreversible and (4) externally and internally irreversible refrigerators. The irreversibilities are assumed to be caused by heat transfer only. The specific cooling load, defined as the cooling load per unit total heat-exchanger surface area, is adopted as the objective function for the refrigerator performance analysis in this paper. 相似文献
15.
电池是电动汽车的核心动力元件,而电池的热管理系统是动力电池发挥最佳工作性能的重要保障,在保证最佳工作性能的同时提升汽车安全性能、电池寿命及能源利用效率。基于21700NCA圆柱型三元锂离子电池,建立以泡沫铝为支撑骨架的电池组系统,在骨架和电池之间的孔隙注入相变材料(PCM)以提高结构内部温度均匀性,在电池底部添加液冷板来强化冷却效果,利用计算流体力学(CFD)仿真技术分析单体电池的耦合散热效果。结果表明,与单一冷却模式相比,使用泡沫金属与相变材料、液体冷却的耦合散热系统,可以达到更加良好的散热效果;对于相变材料,在一定密度范围内,密度越大,对电池系统的冷却效果越好,混合比主要影响相变材料的凝固融化速率。 相似文献
16.
An experiment has been performed to investigate the cooling performance of a thermoelectric ceiling cooling panel (TE‐CCP). The TE‐CCP was composed of 36 TE modules. The cold side of the TE modules was fixed to an aluminum ceiling panel to cool a test chamber of 4.5 m3 volume, while a copper heat exchanger with circulating cooling water at the hot side of the TE modules was used for heat release. Tests were conducted using various system parameters. It was found that the cooling performance of the system depended on the electrical supply, cooling water temperature and flow rate through the heat exchanger. A suitable condition occurred at 1.5 A of current flow with a corresponding cooling capacity of 289.4 W which gives the coefficient of performance (COP) of 0.75 with an average indoor temperature of 27°C. Using thermal comfort test data in literature for small air movements under radiant cooling ceilings, results from the experiments show that thermal comfort could be obtained with the TE‐CCP system. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
17.
18.
A new zero energy cool chamber (ZECC) consisting of two cooling systems, a solar-driven adsorption refrigerator and an evaporative cooling system, was developed and then evaluated as low-cost and eco-friendly cooling storage for storing fruit with moderate respiration rates. The solar-driven adsorption refrigerator, consisting of a solar collector containing activated carbon as an adsorbent, a condenser and an evaporator, cools water based by evaporating methanol and adsorbing it on activated carbon, and then makes ice. The methanol adsorbed on the activated carbon is desorbed by applying solar heat. The ice is then used to cool the storage space, which can be done for a long time without the need for electricity. The evaporative cooling system also cools the storage space by evaporating water from the wet walls containing wet filler. The combined use of two cooling systems reduced the average inside temperature of the new ZECC to 12.07 °C compared with an average outside temperature of 31.5 °C and extended the shelf life of tomatoes from 7 to 23 days. These results suggest that the new ZECC proposed here is low-cost and energy-saving and is useful for storing fruit and vegetables in areas where electricity is unavailable. 相似文献
19.
20.
以eQUEST能耗模拟软件为工具,为重庆市某办公楼建立了能耗仿真模型,分析了空调设定温度、制冷机COP值、室内照明密度对能耗的影响,并对三者相应的节能潜力进行了比较分析。结果表明,建筑电耗随照明密度的减小线性降低,照明密度对建筑节能有着巨大的影响。 相似文献