共查询到20条相似文献,搜索用时 0 毫秒
1.
Volkan Kumtepeli Yulong Zhao Maik Naumann Anshuman Tripathi Youyi Wang Andreas Jossen Holger Hesse 《国际能源研究杂志》2019,43(9):4127-4147
The rapid increase of renewable energy sources made coordinated control of the distributed and intermittent generation units a more demanded task. Matching demand and supply is particularly challenging in islanded microgrids. In this study, we have demonstrated a mixed‐integer quadratic programming (MIQP) method to achieve efficient use of sources within an islanded microgrid. A unique objective function involving fuel consumption of diesel generator, degradation in a lithium‐ion battery energy storage system, carbon emissions, load shifting, and curtailment of the renewable sources is constructed, and an optimal operating point is pursued using the MIQP approach. A systematic and extensive methodology for building the objective function is given in a sequential and explicit manner with an emphasis on a novel model‐based battery aging formulation. Performance of the designed system and a sensitivity analysis of resulting battery dispatch, diesel generator usage, and storage aging against a range of optimization parameters are presented by considering real‐world specifications of the Semakau Island, an island in the vicinity of Singapore. 相似文献
2.
Markus Förstl Donald Azuatalam Archie Chapman Gregor Verbič Andreas Jossen Holger Hesse 《国际能源研究杂志》2020,44(2):718-731
With the increasing popularity of combining residential photovoltaic systems with battery storages, research, industry, and customers look for ways to determine if such an investment is economically profitable. Simulation programs may serve to predict the profitability and lifetime of the system. In this paper, we use techno-economic analysis with a specific account of battery degradation to determine profitability and lifetime of a residential photovoltaic (PV) battery system under different energy management and tariff regimes. This work presents two case studies: the first being a techno-economic comparison for a residential PV-battery system in New South Wales, Australia and Germany, and the second analyzing the profitability and degradation impact of three different operation strategies for a battery storage in Australia. The results reveal that site-specific conditions (i.e., geographical and energy-economic constraints) may have a significant impact on the ideal system configuration and ultimately the anticipated battery lifetime. Furthermore, statistical analysis of different storage operation strategies applied to various prosumer load and generation profiles reveals the effects of storage dispatch strategies on battery aging. 相似文献
3.
为满足煤炭行业和煤矿企业对于供电可靠性日益增长的需求,同时探索兆瓦级储能系统在工业用户侧的实用化解决方案,本项目在内蒙古乌海平沟煤矿设计建造了基于铅酸电池和磷酸铁锂电池储能技术的矿用兆瓦级智能应急电源。系统主要功能为:在电网正常供电时,替代传统的油浸电容器进行无功补偿;在电网出现供电故障时,为煤矿的特别重要负荷提供至少30 min的连续可靠供电。除此外,系统还可根据用户需求执行包括削峰填谷、分布式新能源发电波动平抑在内的多种功能。为保证应急电源系统的安全性、可靠性和使用寿命,本工作在进行设计时着重考虑了蓄电池的选型、容量配比、成组设计以及储能变流系统(PCS)的电路拓扑设计和电池维护高级智能控制策略,旨在探索和实用。 相似文献
4.
5.
The standalone hybrid power system constitutes a synchronous generator driven by a diesel engine, renewable energy source (wind) apart from a battery energy storage system. A coherent control strategy to regulate the voltage and frequency of the standalone grid is proposed in this paper. The system is simulated using Matlab/Simulink for preliminary validation and further tested on a laboratory prototype which involves a TMS320LF2407A DSP controller to digitally implement the control strategy. The dynamic behavior of the system is perused through the direct connection of an induction machine. The control strategy is verified for step changes in load and variation in wind power. 相似文献
6.
The improvement in the operating range of electric vehicles can be accomplished by robust modelling of the design and optimization of the energy storage capacity of the battery pack system. In this work, the authors have conducted a comprehensive survey on battery modelling methods and identified critical areas of improvement vital for estimating the battery capacity. This work proposes the artificial intelligence approach of automated neural networks search (ANS) in development of the robust battery capacity models for the lithium ion batteries based on the inputs (temperature and discharge rates). The robustness in the models is introduced by incorporating uncertainties in the inputs (the temperature and discharge rates, the architecture of algorithm and the models). The statistical analysis and validation of the models reveal that the models formulated using an ANS approach outperform the response surface regression models with correlation coefficient achieved as high as 0.97. The uncertainty analysis based on normal distribution of the inputs suggests that the models formulated from ANS are least sensitive to change in the input conditions when compared to response surface regression models. The global sensitivity analysis reveals that the temperature is a dominant factor for accurate battery capacity estimation. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
7.
8.
9.
This work describes a new control strategy for active energy flow in a hybrid photovoltaic (PV) system. The method introduces an online energy management by a hierarchical fuzzy controller between energy sources that consist of a photovoltaic panel (PVP), the battery and the load. The fuzzy logic controller has been developed for power splitting between PVP and battery, and it makes decision to choose the switching chain rules and corresponding controller. Simulation test results illustrate improvement in the operation's efficiency of online state of the switches and the battery's state of charge (SOC) has been maintained at a reasonable level. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
11.
随着风力发电大规模入网,其随机性,波动性和间歇性特征对电力系统调频,调峰等有功平衡手段及电压稳定的影响越来越严重.储能系统能够在一定程度上控制风场的输出功率,平抑风电功率波动,改善风机低电压穿越能力,甚至为系统提供辅助服务,是从风场侧提高系统对风电的接纳能力的可行解决方案之一.作者在简要的介绍了风场储能技术应用现状的基础上,重点针对储能型风场内蓄电池储能系统的设计方案,容量优化及控制策略的研究现状及关键问题进行综述及探讨. 相似文献
12.
13.
The attention on green and clean technology innovations is highly demanded of a modern era. Transportation has seen a high rate of growth in today's cities. The conventional internal combustion engine‐operated vehicle liberates gasses like carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and water, which result in the increased surface temperature of the earth. One of the optimum solutions to overcome fossil fuel degrading and global warming is electric vehicle. The challenging aspect in electric vehicle is its energy storage system. Many of the researchers mainly concentrate on the field of storage device cost reduction, its age increment, and energy densities' improvement. This paper explores an overview of an electric propulsion system composed of energy storage devices, power electronic converters, and electronic control unit. The battery with high‐energy density and ultracapacitor with high‐power density combination paves a way to overcome the challenges in energy storage system. This study aims at highlighting the various hybrid energy storage system configurations such as parallel passive, active, battery–UC, and UC–battery topologies. Finally, energy management control strategies, which are categorized in global optimization, are reviewed. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
14.
15.
16.
Battery thermal management system (BTMS) is of great significance to keep battery of new energy vehicle (NEV) within favorable thermal state, which attracts extensively attention from researchers and automobile manufacturers. As one BTMS scheme, pumped two-phase system displays excellent cooling capacity owing to large amount of latent heat usage, while there is limited research efforts focusing on the feasibility of the BTMS scheme. This paper experimentally investigates thermal performance of a pumped two-phase BTMS heated by a dummy battery with relative high heat fluxes. The effects of heat fluxes, flow rates and cold source temperatures on thermal performance have been studied and conclusions have been drawn accordingly. The results show that the thermal performance of the system is generally enhanced with the increase of the refrigerant flow rates. When the heat flux and cold source temperature are 0.11 W/cm2 and 10°C, respectively, tavg and △tmax are decreased by 3.4°C and 0.5°C, respectively, when the refrigerant flow rate is increased from 0.20 to 1.67 L/min. Meanwhile, heat transfer coefficient is also improved with an increase of the flow rates, while the enhancements become less obvious under high heat flux. In addition, the tavg and △tmax of cold plate surface are increased when the heat flux is elevated, while the tavg at the low flow rate is increased slightly. However, the increase of △tmax is more obvious at the low flow rate, compared to that at high flow rate. When the heat flux is increased from 0.11 to 0.60 W/cm2, tavg is increased by 3.8°C under the flow rate of 0.2 L/min, while that at the flow rate of 1.67 L/min is almost doubled. Meanwhile, the heat transfer coefficient is increased monotonously at the low flow rate, while that at the high flow rate is first decreased and then increased. Besides, lower surface temperatures can be obtained with low cold source temperatures. However, cold source temperatures affect temperature uniformity less. 相似文献
17.
《International Journal of Hydrogen Energy》2023,48(72):27827-27840
Utilizing solar energy is an efficient method to provide hybrid renewable energy system with sufficient thermal/electrical energy. Meanwhile, the rapid development of electrical vehicles leads to an excess of retired electric vehicles. As a combination of the abovementioned two conceptions, this study proposed and examined a hybrid solar-hydrogen-retired electrical vehicle battery energy system to meet thermal and electrical loads for small-scale usage. The novelty of this research is delivered as follows: first of all, the proposed hybrid energy system supplies both thermal and electrical energy to small-scale end users; secondly, the retired electrical vehicle batteries are recycling to relieve the pressure of battery demand; thirdly, an energy management strategy to regulate the complicated hybrid energy system is designed. The results show that with assistance of fuel cell as an energy storage unit, solar energy can basically satisfy the annual thermal/electrical load with maximum monthly energy supplement of 1220.43 MJ and 1572.75 kWh, respectively. However, the solar radiation serving as single energy source is not very reliable for large-scale utilization. Although the state of charge does not fluctuate greatly, the small range charge/discharge between 59% and 63% can still guarantee the normal operation of the proposed hybrid energy system. 相似文献
18.
19.