首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scattering and absorption in the atmosphere influence the colors of objects and can dramatically affect the way a landscape is perceived. We estimated, computationally, the chromatic losses in natural scenes as a function of the viewing distance for several atmospheric conditions. The study was based on models of real atmospheric scattering and absorption applied to hyperspectral data from natural images. It was found that exponential models could describe well the reduction in the number of perceived colors as a function of the viewing distance and the relationship between the coefficient reflecting the sum of the scattering and absorption effects and the viewing distance for a 50% reduction in colors. These results provide simple models to estimate the chromatic losses with viewing distance and can be used in applications of atmospheric optics concerned with visual simulations. © 2013 Wiley Periodicals, Inc. Col Res Appl, 39, 341–346, 2014  相似文献   

2.
The estimation of chromatic diversity of natural images is commonly quantified through the computation of the number of discernible colors and has received much attention because of the different implications it has. However, the relationship between that number and the number of colors that really attracts the attention from an observer is still not clear and has been given little attention. New concepts about salient discernible colors‐the salient chromatic diversity of images‐ and remarkable salient colors‐connected colors in the same salient image area‐are introduced as opposed to the classical number of discernible object colors, which is usually evaluated for the global image without differentiating between probable attended and non‐attended image regions. We have used different well‐known saliency models to locate the salient regions in the scenes and have heuristically studied the extent to which those models preserve the chromatic diversity of natural images. Based on a bottom‐up approach, a reduction of around 40%‐55% in the number of discernible colors were obtained, and not all saliency algorithms preserved a uniform sampling of the original color gamut. Thus, our results suggests that particularly the graph‐based visual saliency model got good low dissimilarity values in comparison with other approaches that put emphasis solely on color as the main low‐level feature. Furthermore, we have introduced a quantification scheme of the average number of remarkable salient colors appearing in the images, and have proved how the heuristic‐based analysis of salient image areas can be used to create segmented images automatically according to their salient chromatic diversity.  相似文献   

3.
Differences between chromatic adaptation and color constancy are discussed, in order to call into question the commonly held view that chromatic adaptation is the mechanism of color constancy. Whereas chromatic adaptation requires many seconds of time and occurs for simple visual scenes, color constancy asserts itself immediately and is most powerful in complex visual scenes. Furthermore, models of chromatic adaptation are not so illuminant invariant as other models of color vision. Therefore, a new operational foundation for color constancy is proposed, and existing non-adaptation models of color constancy are enumerated for future tests.  相似文献   

4.
In modern society, elderly people tend to become enthusiastic users of displays. These displays are optimized for the visual properties of young adults ignoring the specific attributes of the vision of the elderly though the existence of differences is evident. It is true, however, that most of the investigations follow a bottom‐up paradigm (changes of optical density, neural changes, etc.), and their results are too ambiguous to be taken into account directly in display optimization for the elderly, partly because there is a long‐term adaptation, which apparently recompensates for some of the changes in the human visual system. Preference is a high‐level psychological factor having a very important impact on the acceptability of color displays. The present article follows a top–down methodology to investigate these age‐related differences directly. The first part concentrates on functionalities of the human visual system: white point preference, chroma perception, unique, and preferred hues. Results confirm the long‐term compensation theory for the elderly observers along with the chromatic content decrease of perceived colors. The second part investigates preference differences in case of photorealistic images in terms of global and local contrast, white point, average chroma, and the effect of several image color manipulation techniques. Results indicate significant differences between young and aged observers' color image preference, some of which can be explained with neuro‐physiological changes, others may be attributed to cultural implications. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 381–394, 2008  相似文献   

5.
A theory of chromatic adaptation is derived from Parts I and II, and presented in terms of relative wavelength, purity, and radiant power, leading directly to a predictive model of corresponding hue, chroma, and lightness. Considering that even simple animals have effective color vision and color constancy, the aim was to develop a simple model of complete adaptation. The model is tested against well‐known data sets for corresponding colors in illuminants D65, D50, and A, and for small and large visual fields, and performs comparably to CIECAM02. Constant hue is predicted from Part I's mechanism of color constancy from invariant wavelength ratios, where constant hues shift wavelength linearly with reciprocal illuminant color temperature. Constant chroma is predicted from constant colorimetric purity. Constant lightness is predicted from chromatic adaptation of spectral sensitivity represented by power ratios of complementary colors (rather than cone responses which lack spectral sharpening). This model is the first of its type and is not formatted for ease of computation. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

6.
I describe complementary colors' physiology and functional roles in color vision, in a three‐stage theory (receptor, opponent color, and complementary color stages). 40 specific roles include the complementary structuring of: S and L cones, opponent single cells, cardinal directions, hue cycle structure, hue constancy, trichromatic color mixture, additive/subtractive primaries, two unique hues, color mixture space, uniform hue difference, lightness‐, saturation‐, and wavelength/hue‐discrimination, spectral sensitivity, chromatic adaptation, metamerism, chromatic induction, Helson‐Judd effect, colored shadows, color rendering, warm‐cool colors, brilliance, color harmony, Aristotle's flight of colors, white‐black responsivity, Helmholtz‐Kohlrausch effect, rainbows/halos/glories, dichromatism, spectral‐sharpening, and trimodality of functions (RGB peaks, CMY troughs whose complementarism adapts functions to illuminant). The 40 specific roles fall into 3 general roles: color mixture, color constancy, and color perception. Complementarism evidently structures much of the visual process. Its physiology is evident in complementarism of cones, and opponent single cells in retina, LGN, and cortex. Genetics show our first cones were S and L, which are complementary in daylight D65, giving a standard white to aid chromatic adaptation. M cone later split from L to oppose the nonspectral (red and purple) hues mixed from S+L. Response curves and wavelength peaks of cones L, S, and (S+L), M, closely resemble, and lead to, those of opponent‐color chromatic responses y, b, and r, g, a bimodal system whose summation gives spectral‐sharpened trimodal complementarism (RGB peaks, CMY troughs). Spectral sharpening demands a post‐receptoral, post‐opponent‐colors location, hence a third stage. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

7.
The light‐emitting diode (LED)‐based light sources have been widely applied across numerous industries and in everyday practical uses. Recently, the LED‐based light source consisting of red, green and blue LEDs with narrow spectral bands (RGB‐LED) has been a more preferred illumination source than the common white phosphor LED and other traditional broadband light sources because the RGB‐LED can create many types of illumination color. The color rendering index of the RGB‐LED, however, is considerably lower compared to the traditional broadband light sources and the multi‐band LED light source (MB‐LED), which is composed of several LEDs and can accurately simulate daylight illuminants. Considering 3 relatively narrow spectral bands of the RGB‐LED light source, the color constancy, which is referred to as the ability of the human visual system to attenuate influences of illumination color change and hold the perception of a surface color constant, may be worse under the RGB‐LED light source than under the traditional broadband light sources or under the MB‐LED. In this study, we investigated categorical color constancy using a color naming method with real Munsell color chips under illumination changes from neutral to red, green, blue, and yellow illuminations. The neutral and 4 chromatic illuminants were produced by the RGB‐LED light source. A modified use of the color constancy index, which describes a centroid shift of each color category, was introduced to evaluate the color constancy performance. The results revealed that categorical color constancy under the 4 chromatic illuminants held relatively well, except for the red, brown, orange, and yellow color categories under the blue illumination and the orange color category under the yellow illumination. Furthermore, the categorical color constancy under red and green illuminations was better than the categorical color constancy under blue and yellow illuminations. The results indicate that a color constancy mechanism in the visual system functions in color categories when the illuminant emits an insufficient spectrum to render the colors of reflecting surfaces accurately. However, it is not recommended to use the RGB‐LED light source to produce blue and yellow illuminations because of the poor color constancy.  相似文献   

8.
Color tolerances of curved gonio‐apparent panels have been studied in this work. To achieve that, an experimental set‐up of the illumination and tilt variation of two identical coated panels was designed for simulation of curved panels with both concave and convex borders and with and without effect pigments (perceived as solid and gonio‐apparent colors, respectively). Finally, visual and instrumental measures were collected with both curvatures. The results show that the relationship of the instrumental color difference with the tilt angle can be modeled by a second‐order and the vertex did not depend on illumination, but on coating type. The critical angles (the angle marked when the color discrepancy between two identical samples is merely perceived) assessed by the observers showed that they were not equal according to border, nor according to coating type. The color tolerances at these angles were clearly higher than the conventional chromatic thresholds of industrial color comparisons.  相似文献   

9.
This article describes a color naming experiment using 2D and 3D rendered color samples. Conventional color naming experiments using a priori clues generally involve 2D clues such as color patches. However, in real‐world scenes, most objects have 3D shapes whose colors are affected by illumination effects such as shadows and gloss. We use 2D and 3D rendered samples as clues in the experiments, and analyze the relationship between color terms and object surfaces. First, we develop a color term collection system that can produce 218 test colors. We render the color images of a flat disk as a 2D sample and a sphere as a 3D sample on a calibrated display device. It is supposed that the 2D and 3D surfaces with the same object color are obtained under the same conditions of viewing and illumination. The results of color naming experiments show that there are differences for color terms between 2D and 3D samples. Important findings are as follows: (1) brighter color terms tend to be chosen for the 3D samples than the 2D samples, when observing achromatic colors, (2) achromatic color terms are chosen for 3D samples having low saturation, and (3) for chromatic colors, a darker color term is generally chosen in comparison to the corresponding 2D samples of the same color. These properties become more prominent by changing the illumination angle from 0° to 45° to the surface normal. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 270–280, 2015  相似文献   

10.
The spectral overlap of color‐sampling filters increases errors when using a diagonal matrix transform, for color correction and reduces color distinction. Spectral sharpening is a transformation of colors that was introduced to reduce color‐constancy errors when the colors are collected through spectrally overlapping filters. The earlier color‐constancy methods improved color precision when the illuminant color is changed, but they overlooked the color distinction. In this article, we introduce a new spectral sharpening technique that has a good compromise of color precision and distinction, based on real physical constraints. The spectral overlap is measured through observing a gray reference chart with a set of real and spectrally disjoint filters selected by the user. The new sharpening method enables to sharpen colors obtained by a sensor without knowing the camera response functions. Experiments with real images showed that the colors sharpened by the new method have good levels of color precision and distinction as well. The color‐constancy performance is compared with the data‐based sharpening method in terms of both precision and distinction. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 564–576, 2015  相似文献   

11.
The Munsell Color System and the Natural Color System are widely used but they have some limitations due to the manufacturing process and sampling choices. To estimate quantitatively these limitations we compared the colors of natural scenes with the colors represented by these systems under a wide range of illuminants. Spectral data from the two systems and from natural scenes were used in the analysis. It was found that a considerable portion of natural colors are not accounted by these systems, mainly colors with low lightness levels. Under D65 the Munsell Color System color volume corresponds to 72% of the Natural Color System color volume which in turn represents only 53% of the natural scenes color volume. If individual colors are considered, less than half are contained within these systems. To obtain a complete match to the natural colors contained by the color systems thresholds of 7 and 5 CIELAB units would be required for Munsell Color System and Natural Color System, respectively. Variations with the illuminant are generally modest showing that both system work similarly across different illuminations. Although these Color Systems have limitations in describing low lightness colors they perform quite well for medium to high levels of lightness.  相似文献   

12.
OSA uniform color space was used to study the relationship between visual acuity and OSA color contrast. Visual acuity is characterized by 50% minimal separable visual angle using Landolt-C. The OSA color contrast is characterized by the distance between colors in OSA color space. Twenty subjects with normal color vision were tested on 342 test sheets printed with colored Landolt-Cs and background. These results demonstrated that MSVA is approximately inverse log-linearly related to OSA color contrast (R2 = 80.4%). Although luminance contrast (R2 = 54.2%) is more salient than chromatic contrast (R2 = 16.4%), both contrasts can induce very high visual acuity provided that they are sufficiently high. There is also evidence of an additive interaction between chromatic contrast and luminance contrast. Based on these findings, the OSA uniform color space and its color difference formula can be used as a scale for quantifying color contrast to accurately predict the size of colored text or symbols. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The Helmholtz–Kohlrausch effect consists of two different approaches: the variable achromatic color (VAC) and variable chromatic color (VCC) methods. In this article the difficult conceptual difference between the methods is clarified using new explanations with their schematic figures. The concept of loci with various parameters on B / L or L / Y ratios is completely different between the two methods. The VCC method can determine perceived lightness values for achromatic and chromatic colors in the whole color space. The VAC method gives perceived lightness deviation between reference achromatic color and each of the various test chromatic colors both kept at the same Munsell Value. The VAC method can never give any information on equiperceived lightness to test chromatic colors. Despite the difference between the two methods, misuse of the VAC method is sometimes found for perceived lightness studies of various chromatic colors, because of its ease in observations. An example is shown for the L scale of OSA‐UCS. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 146–155, 2006  相似文献   

14.
Color‐vision deficiency is a relatively common genetic condition, which often leads to the obstruction of necessary information in colored images. It is important to minimize such inconvenient effects in communication using colored images from a universal design perspective. The universal design principle stipulates that all environments and products should be usable by all people, regardless of age, physical attributes, and ability. This article proposes a method to detect color combinations in a given image that would confuse color dichromats, and suggests a way in which to modify them to make the image easily distinguishable for both normal and dichromatic observers. Confusing color combinations were detected based on a color‐difference calculation using simulations of how the color would appear to dichromats. The confusing colors were then modified based on the minimization of an evaluation function, which was defined as the sum of the degree of confusion and the degree of color change from the original image. Several colored images obtained by the proposed method were compared with the originals by red–green dichromatic observers who judged them to be clearer, thereby confirming that the proposed method was effective for color rendering for universal design. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 203–211, 2008  相似文献   

15.
Color scaling experiments have established that perceived colors are distributed on the surface of a hypersphere in spherical space. A formal mathematical model of the color space is defined. Color differences as estimated by an observer are equal to the chord distance between corresponding points on the surface in spherical space. In one mathematical model are united: brightness, saturation, and hue as expressed in the empirical Munsell and NCS systems; complementary colors; large color differences; and contrast effects that are not represented in other models. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 113–124, 2008.  相似文献   

16.
Color combination criteria are said to entail an affective response in interior design. We investigated the color combination criteria that orient the preference of current observers, after Le Corbusier's 1931 Salubra keyboards. We explored the similarity/contrast in Natural Color System (NCS) hue, blackness, and chromaticness in 312 combinations with four colors, two backgrounds and two accent colors, coming from 43 individual colors, on the walls of a simulated interior of a bedroom from the Swiss Pavilion (Le Corbusier, 1930-1931). Participants were 644 students of architecture and interior design in Western Europe and Near East, who evaluated with a Likert scale their preference for virtual images via an online survey. Results indicate that the most preferred color combinations are those with hues closer in the color wheel, being the similarity between hues in the backgrounds more important than in the accent colors, and with NCS B30G to G as the most preferred hues. Observers preferred color compositions with blackness under 10% and similar blackness between the two background colors, together with a certain blackness contrast between these background colors and the two color accents. Similarly, observers liked color compositions with low chromaticness and low chromaticness difference among the four colors of the composition.  相似文献   

17.
In the proposed modified opponent‐colors system, the hue regular rectangles show the chromatic coordinates of any chromatic colors better than hue circles. In the hue rectangles equihue and equichroma loci are shown together with equigrayness loci. In the color perception space of the modified opponent‐colors system, a city‐block metric must be used instead of a Euclidean one for distance. The reason for this is described in detail. The proposed color perception space constitutes a regular octahedron. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 171–179, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10046  相似文献   

18.
Fabric color design is a complex process in textiles and clothing industry. A new method for fabric color selection and transferring is proposed in this study. An automatic way to select the colors from the natural images is developed for fabric color design. Based on these colors, a fabric image is then used for color transferring. The fabric image is processed by a bias field estimation operation, and the membership function of the color deviations of the image has been obtained. According to the selected colors and the color membership function, the fabric image colors can be changed and transferred to a new image that preserves the similar texture appearance but with significantly different color effects. The experimental results confirm the effectiveness of the proposed method. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 304–310, 2015  相似文献   

19.
This article aims to determine the process underlying the subjective impression about the fidelity of reproduced object colors. To this end, we present the concept of the naturalness constraint and a framework for specification of naturalness judgments. We consider several research questions that are essential for this framework and discuss plausible answers supported by experiments. In general, naturalness assessment of reproduced object colors can be (1) defined as similarity to prototypical object colors, and (2) characterized by a probability density function (e.g., Gaussian). Experiments show that (3) there is a considerable amount of consistency in naturalness judgments of locally and globally processed images (although observers are slightly more tolerant of global image processing), and (4) naturalness judgments vary for different object categories; e.g., subjects are more consistent in naturalness judgments of skin, grass, and sky reproductions than shirt reproduction. We suggest that (5) naturalness of a whole picture is determined by the naturalness of the most critical object in that picture. Finally, we introduce a naturalness index predicting perceived naturalness of color reproduction of real‐life scenes. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 52–67, 1999  相似文献   

20.
Color appearance for real objects has been studied over decades and it has been well modeled. However, in augmented reality (AR) environments, virtual content is added to a real background and a mixed appearance is perceived. In this research, we studied color appearance in AR and investigated the applicability of the CAM16 color appearance model, one of the most comprehensive current color appearance models, in an AR environment. Using a benchtop optical mixing apparatus as an AR simulator, objective measurements of mixed colors in AR were performed. Then a psychophysical color matching experiment was performed with combinations of mixed foreground and background colors. The results showed that CAM16 is not accurate in predicting the color appearance in AR environment; therefore, it was modified with the addition of chromatic simultaneous contrast, resulting in an improved fit to the AR experiment data. A second psychophysical color matching experiment was performed on a single display to compare the color perception in AR with color perception in real world from a single display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号