首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoblastoma is the most common intraocular cancer in childhood. Loss of function in both copies of the RB1 gene is the causal mutation of retinoblastoma. Current treatment for retinoblastoma includes the use of chemotherapeutic agents, such as the DNA damaging agent etoposide, which is a topoisomerase II poison that mainly generates DNA double-strand breaks (DSBs) and genome instability. Unfaithful repairing of DSBs could lead to secondary cancers and serious side effects. Previously, we found that RB knocked-down mammalian cells depend on a highly mutagenic pathway, the micro-homology mediated end joining (MMEJ) pathway, to repair DSBs. Poly ADP ribose polymerase 1 (PARP1) is a major protein in promoting the MMEJ pathway. In this study, we explored the effects of olaparib, a PARP inhibitor, in killing retinoblastoma cells. Retinoblastoma cell line Y79 and primary retinoblastoma cells expressed the cone-rod homeobox protein (CRX), a photoreceptor-specific marker. No detectable RB expression was found in these cells. The co-treatment of olaparib and etoposide led to enhanced cell death in both the Y79 cells and the primary retinoblastoma cells. Our results demonstrated the killing effects in retinoblastoma cells by PARP inhibitor olaparib after inducing DNA double-strand breaks. The use of olaparib in combination with etoposide could improve the cell-killing effects. Thus, lower dosages of etoposide can be used to treat retinoblastoma, which would potentially lead to a lower level of DSBs and a relatively more stable genome.  相似文献   

2.
3.
4.
Although ovarian cancer is a rare disease, it constitutes the fifth leading cause of cancer death among women. It is of major importance to develop new therapeutic strategies to improve survival. Combining P8-D6, a novel dual topoisomerase inhibitor with exceptional anti-tumoral properties in ovarian cancer and compounds in preclinical research, and olaparib, a PARP inhibitor targeting DNA damage repair, is a promising approach. P8-D6 induces DNA damage that can be repaired by base excision repair or homologous recombination in which PARP plays a major role. This study analyzed benefits of combining P8-D6 and olaparib treatment in 2D and 3D cultures with ovarian cancer cells. Measurement of viability, cytotoxicity and caspase activity were used to assess therapy efficacy and to calculate the combination index (CI). Further DNA damage was quantified using the biomarkers RAD51 and γH2A.X. The combinational treatment led to an increased caspase activity and reduced viability. CI values partially show synergisms in combinations at 100 nM and 500 nM P8-D6. More DNA damage accumulated, and spheroids lost their membrane integrity due to the combinational treatment. While maintaining the same therapy efficacy as single-drug therapy, doses of P8-D6 and olaparib can be reduced in combinational treatments. Synergisms can be seen in some tested combinations. In summary, the combination therapy indicates benefits and acts synergistic at 100 nM and 500 nM P8-D6.  相似文献   

5.
Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8) and amber score (−51.42). Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development.  相似文献   

6.
Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.  相似文献   

7.
Ovarian cancer is the most lethal gynecologic malignancy in the United States. Some patients affected by ovarian cancers often present genome instability with one or more of the defects in DNA repair pathways, particularly in homologous recombination (HR), which is strictly linked to mutations in breast cancer susceptibility gene 1 (BRCA 1) or breast cancer susceptibility gene 2 (BRCA 2). The treatment of ovarian cancer remains a challenge, and the majority of patients with advanced-stage ovarian cancers experience relapse and require additional treatment despite initial therapy, including optimal cytoreductive surgery (CRS) and platinum-based chemotherapy. Targeted therapy at DNA repair genes has become a unique strategy to combat homologous recombination-deficient (HRD) cancers in recent years. Poly (ADP-ribose) polymerase (PARP), a family of proteins, plays an important role in DNA damage repair, genome stability, and apoptosis of cancer cells, especially in HRD cancers. PARP inhibitors (PARPi) have been reported to be highly effective and low-toxicity drugs that will tremendously benefit patients with HRD (i.e., BRCA 1/2 mutated) epithelial ovarian cancer (EOC) by blocking the DNA repair pathways and inducing apoptosis of cancer cells. PARP inhibitors compete with NAD+ at the catalytic domain (CAT) of PARP to block PARP catalytic activity and the formation of PAR polymers. These effects compromise the cellular ability to overcome DNA SSB damage. The process of HR, an essential error-free pathway to repair DNA DSBs during cell replication, will be blocked in the condition of BRCA 1/2 mutations. The PARP-associated HR pathway can also be partially interrupted by using PARP inhibitors. Grossly, PARP inhibitors have demonstrated some therapeutic benefits in many randomized phase II and III trials when combined with the standard CRS for advanced EOCs. However, similar to other chemotherapy agents, PARP inhibitors have different clinical indications and toxicity profiles and also face drug resistance, which has become a major challenge. In high-grade epithelial ovarian cancers, the cancer cells under hypoxia- or drug-induced stress have the capacity to become polyploidy giant cancer cells (PGCCs), which can survive the attack of chemotherapeutic agents and start endoreplication. These stem-like, self-renewing PGCCs generate mutations to alter the expression/function of kinases, p53, and stem cell markers, and diploid daughter cells can exhibit drug resistance and facilitate tumor growth and metastasis. In this review, we discuss the underlying molecular mechanisms of PARP inhibitors and the results from the clinical studies that investigated the effects of the FDA-approved PARP inhibitors olaparib, rucaparib, and niraparib. We also review the current research progress on PARP inhibitors, their safety, and their combined usage with antiangiogenic agents. Nevertheless, many unknown aspects of PARP inhibitors, including detailed mechanisms of actions, along with the effectiveness and safety of the treatment of EOCs, warrant further investigation.  相似文献   

8.
Despite notable advances in utilising PARP inhibitor monotherapy, many cancers are not PARP inhibitor-sensitive or develop treatment resistance. In this work, we show that the two structurally-related sesquiterpene lactones, a 2-bromobenzyloxy derivative of dehydrosantonin (BdS) and alantolactone (ATL) sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose treatment with the PARP inhibitor, olaparib. Exposure to combination treatments of olaparib with BdS or ATL induces cell-cycle changes, chromosomal instability, as well as considerable increases in nuclear area. Mechanistically, we uncover that mitotic errors likely depend on oxidative stress elicited by the electrophilic lactone warheads and olaparib-mediated PARP-trapping, culminating in replication stress. Combination treatments exhibit moderately synergistic effects on cell survival, probably attenuated by a p53-mediated, protective cell-cycle arrest in the G2 cell-cycle phase. Indeed, using a WEE1 inhibitor, AZD1775, to inhibit the G2/M cell-cycle checkpoint further decreased cell survival. Around half of all cancers diagnosed retain p53 functionality, and this proportion could be expected to increase with improved diagnostic approaches in the clinic. Utilising sublethal oxidative stress to sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose PARP-trapping could therefore serve as the basis for future research into the treatment of cancers currently refractory to PARP inhibition.  相似文献   

9.
10.
Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial–mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, β-catenin, MMP2, MMP9, p53, and integrin α2 and β1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.  相似文献   

11.
Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.  相似文献   

12.
Cisplatin is a commonly used chemotherapeutic drug for treatment of oral carcinoma, and combinatorial effects are expected to exert greater therapeutic efficacy compared with monotherapy. Poly(ADP-ribosyl)ation is reported to be involved in a variety of cellular processes, such as DNA repair, cell death, telomere regulation, and genomic stability. Based on these properties, poly(ADP-ribose) polymerase (PARP) inhibitors are used for treatment of cancers, such as BRCA1/2 mutated breast and ovarian cancers, or certain solid cancers in combination with anti-cancer drugs. However, the effects on oral cancer have not been fully evaluated. In this study, we examined the effects of PARP inhibitor on the survival of human oral cancer cells in vitro and xenografted tumors derived from human oral cancer cells in vivo. In vitro effects were assessed by microculture tetrazolium and survival assays. The PARP inhibitor AZD2281 (olaparib) showed synergetic effects with cisplatin in a dose-dependent manner. Combinatorial treatment with cisplatin and AZD2281 significantly inhibited xenografted tumor growth compared with single treatment of cisplatin or AZD2281. Histopathological analysis revealed that cisplatin and AZD2281 increased TUNEL-positive cells and decreased Ki67- and CD31-positive cells. These results suggest that PARP inhibitors have the potential to improve therapeutic strategies for oral cancer.  相似文献   

13.
Several poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors are now in clinical use for tumours with defects in BReast CAncer genes BRCA1 or BRCA2 that result in deficient homologous recombination repair (HRR). Use of olaparib, niraparib or rucaparib for the treatment of high-grade serous ovarian cancer, including in the maintenance setting, has extended both progression free and overall survival for women with this malignancy. While different PARP inhibitors (PARPis) are mechanistically similar, differences are apparent in their chemical structures, toxicity profiles, PARP trapping abilities and polypharmacological landscapes. We have treated ovarian cancer cell line models of known BRCA status, including the paired cell lines PEO1 and PEO4, and UWB1.289 and UWB1.289+BRCA1, with five PARPis (olaparib, niraparib, rucaparib, talazoparib and veliparib) and observed differences between PARPis in both cell viability and cell survival. A cell line model of acquired resistance to veliparib showed increased resistance to the other four PARPis tested, suggesting that acquired resistance to one PARPi may not be able to be rescued by another. Lastly, as a proof of principle, HRR proficient ovarian cancer cells were sensitised to PARPis by depletion of BRCA1. In the future, guidelines will need to emerge to assist clinicians in matching specific PARPis to specific patients and tumours.  相似文献   

14.
Poly(ADP-ribose) polymerase 2 (PARP2) participates in base excision repair (BER) alongside PARP1, but its functions are still under study. Here, we characterize binding affinities of PARP2 for other BER proteins (PARP1, APE1, Polβ, and XRCC1) and oligomerization states of the homo- and hetero-associated complexes using fluorescence-based and light scattering techniques. To compare PARP2 and PARP1 in the efficiency of PAR synthesis, in the absence and presence of protein partners, the size of PARP2 PARylated in various reaction conditions was measured. Unlike PARP1, PARP2 forms more dynamic complexes with common protein partners, and their stability is effectively modulated by DNA intermediates. Apparent binding affinity constants determined for homo- and hetero-oligomerized PARP1 and PARP2 provide evidence that the major form of PARP2 at excessive PARP1 level is their heterocomplex. Autoregulation of PAR elongation at high PARP and NAD+ concentrations is stronger for PARP2 than for PARP1, and the activity of PARP2 is more effectively inhibited by XRCC1. Moreover, the activity of both PARP1 and PARP2 is suppressed upon their heteroPARylation. Taken together, our findings suggest that PARP2 can function differently in BER, promoting XRCC1-dependent repair (similarly to PARP1) or an alternative XRCC1-independent mechanism via hetero-oligomerization with PARP1.  相似文献   

15.
Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy. Here we evaluated the combination of KPT-8602 with PARP inhibitors (PARPi) olaparib, veliparib and rucaparib in 22rv1 mCRPC cells. KPT-8602 synergized with PARPi (CI < 1) at pharmacologically relevant concentrations. KPT-8602-PARPi showed superior induction of apoptosis compared to single agent treatment and caused up-regulation of pro-apoptotic genes BAX, TP53 and CASPASE 9. Mechanistically, KPT-8602-PARPi suppressed AR, ARv7, PSA and AR targets FOXA1 and UBE2C. Western blot analysis revealed significant down-regulation of AR, ARv7, UBE2C, SAM68, FOXA1 and upregulation of cleaved PARP and cleaved CASPASE 3. KPT-8602 with or without olaparib was shown to reduce homologous recombination-regulated DNA damage response targets including BRCA1, BRCA2, CHEK1, EXO1, BLM, RAD51, LIG1, XRCC3 and RMI2. Taken together, this study revealed the therapeutic potential of a novel combination of KPT-8602 and PARP inhibitors for the treatment of mCRPC.  相似文献   

16.
DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme.  相似文献   

17.
Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations.  相似文献   

18.
19.
Poly(ADP-ribose) polymerases (PARP) are proteins responsible for DNA damage detection and signal transduction. PARP inhibitors (PARPi) are able to interact with the binding site for PARP cofactor (NAD+) and trapping PARP on the DNA. In this way, they inhibit single-strand DNA damage repair. These drugs have been approved in recent years for the treatment of ovarian cancer. Although they share some similarities, from the point of view of the chemical structure and pharmacodynamic, pharmacokinetic properties, these drugs also have some substantial differences. These differences may underlie the different safety profiles and activity of PARPi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号