首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of palm oil transesterification in a batch reactor   总被引:20,自引:15,他引:20  
Methyl esters were produced by transesterification of palm oil with methanol in the presence of a catalyst (KOH). The rate of transesterification in a batch reactor increased with temperature up to 60°C. Higher temperatures did not reduce the time to reach maximal conversion. The conversion of triglycerides (TG), diglycerides (DG), and monoglycerides (MG) appeared to be second order up to 30 min of reaction time. Reaction rate constants for TG, DG, and MG hydrolysis reactions were 0.018–0.191 (wt%·min)−1, and were higher at higher temperatures and higher for the MG reaction than for TG hydrolysis. Activation energies were 14.7, 14.2, and 6.4 kcal/mol for the TG, DG, and MG hydrolysis reactions, respectively. The optimal catalyst concentration was 1% KOH.  相似文献   

2.
A continuous process for the glycerolysis of soybean oil   总被引:2,自引:4,他引:2  
A continuous process for the glycerolysis of soybean oil with pure and crude glycerol, the co-product from the transesterification of soybean oil, was investigated in a pilot plant. The process was equipped with a static and a high-shear mixer. The experimental studies explored the effects of variations in mixing intensity, temperature, reactant flow rates, and reactant stoichiometry on the formation of MG and DG. The developed process resulted in high conversion of TG to MG. The most favorable conditions were 230°C, 40 mL/min total flow, 25 min of reaction time, 2.5∶1 molar ratio of glycerol/soybean oil, and 3600 rpm for the reactions involving crude glycerol where the concentrations of MG and DG in the product were about 56 and 36 wt%, respectively. Under similar conditions, glycerolysis of pure glycerol resulted in 58% MG and 33% DG. In general, higher temperatures and mixing intensities favored the conversion of TG to MG and DG. Reaction temperature had a greater influence on the extent of the reaction than mixing. The formation of MG approached equilibrium for nearly all cases under investigation.  相似文献   

3.
Four triglyceride fats and oils (beef tallow, lard, rapeseed oil and soybean oil) were reacted with glycerol while using lipase as the catalyst. For all fats examined, at reaction temperatures above the critical temperature (Tc), the fatty acid compositions of the monoglyceride (MG) and diglyceride (DG) fractions and of the original fat were similar. A relatively low yield of MG was obtained (20–30 wt%). When the reaction was carried out with beef tallow or lard at a temperature below the Tc (40°C), the concentration of saturated fatty acids in the MG fraction was 2 to 4 times greater than that in the DG fraction. Correspondingly, the concentration of unsaturated fatty acids in the DG fraction was more than two times greater than that in the MG fraction. At 5°C, a similar trend was observed for rapeseed oil and soybean oil. Direct analysis of partial glycerides during glycerolysis by high-temperature gas-liquid chromatography showed that below Tc the content of C16 MG increased relatively more than C18 MG. C36 DG and C54 TG were apparently resistant to glycerolysis. Preferential distribution of saturated fatty acids into the MG fraction was accompanied by a high yield of monoglyceride (45–70 wt%) and solidification of the reaction mixture. It is concluded that during glycerolysis below Tc, preferential crystallization occurs for MGs that contain a saturated fatty acid.  相似文献   

4.
Glycerolysis of crude fatty acid methyl esters (FAME) with crude glycerol derived from biodiesel production was performed. The reaction was accomplished at temperatures ranging between 160 and 200 °C and molar ratios of FAME to glycerol ranging between 1.5 and 3.0. Increasing the temperature improved the formation rate of monoglycerides (MG) and diglycerides (DG). However, increasing both the temperature and the molar ratio of glycerol to FAME diminished the formation of MG. Best results (43 % MG and 26 % DG in 10 min) were obtained at 200 °C using the lowest concentration of glycerol. The effects of soap and NaOH present in crude glycerol were controlled by carrying out the reaction with pure glycerol. In comparison with NaOH-catalyzed reactions, soap-catalyzed reactions resulted in a slower formation rate of products. However, soap-catalyzed reactions were less prone to secondary reactions, affording maximum yields of MG and DG, which were higher than those obtained with NaOH-catalyzed reactions at 180 and 200 °C.  相似文献   

5.
The purpose of this study was to investigate enzymatic and autocatalytic esterification of FFA in rice bran oil (RBO), palm oil (PO), and palm kernel oil (PKO), using MG and DG as esterifying agents. The reactions were carried out at low pressure (4–6 mm Hg) either in the absence of any added catalyst at high temperature (210–230°C) or in the presence of Mucor miehei lipase at low temperature (60°C). The reactions were carried out using different concentrations of MG, and the optimal FFA/MG ratio and time were 2∶1 (molar) and 6 h, respectively, in both auto- and enzyme-catalyzed processes. With DG as the esterifying agent in the autocatalytic process, the optimal temperature was 220°C, and the optimal FFA/DG ratio was 1∶1.25. For both MG and DG, the enzymatic process was more effective in reducing FFA and produced more favorable levels of unsaponifiable matter and color in the final product. The PV of the final products were also lower (1.8–2.9 mequiv/kg) by using the enzymatic process. To produce edible-grade oil, a single deodorization step would be required after enzymatic esterification; whereas, alkali refining, bleaching, and deodorization would be required after autocatalytic treatment.  相似文献   

6.
Enzymatic glycerolysis of olive oil for mono- (MG) and diglycerides (DG) synthesis was investigated. Several pure organic solvents and co-solvent mixtures were screened in a batch reaction system. The yields of MG and DG in co-solvent mixtures exceeded those of the corresponding pure organic solvents. Batch reaction conditions of the glycerolysis reaction, the lipase amount, the glycerol to oil molar ratio, the reaction time, and temperature, were studied. In these systems, the high content of reaction products, especially MG (55.8 wt%) and DG (16.4wt%) was achieved at 40 °C temperature and 0.025 g of lipase with relatively low glycerol to oil molar ratio (2: 1) within 4 h of reaction time in isopropanol/tert-butanol (1: 3) solvent mixture. Glycerolysis reaction was optimized with the assistance of response surface methodology (RSM). Optimal condition for reaction conversion was recommended as lipase amount 0.025 g, glycerol to oil molar ratio 2: 1, reaction time 4 h and temperature 40 °C.  相似文献   

7.
The feasibility of using ultrasonic mixing to obtain biodiesel from soybean oil was established. The alkaline transesterification reaction was studied at three levels of temperature and four alcohol-to-oil ratios. Excellent yields were obtained for all conditions. For example, at 40°C with ultrasonic agitation and a molar ratio of 6∶1 methanol/oil, the conversion to FAME was greater than 99.4% after about 15 min. For a 6∶1 methanol/oil ratio and a 25 to 60°C temperature range, a pseudo second-order kinetic model was confirmed for the hydrolysis of DG and TG. Reaction rate constants were three to five times higher than those reported in the literature for, mechanical agitation. We suspect that the observed mass transfer and kinetic rate enhancements were due to the increase in interfacial area and activity of the microscopic and macroscopic bubbles formed when ultrasonic waves of 20 kHz were applied to a two-phase reaction system.  相似文献   

8.
Glycerolysis of soybean oil was conducted in a supercritical carbon dioxide (SC-CO2) atmosphere to produce monoglycerides (MG) in a stirred autoclave at 150–250°C, over a pressure range of 20.7–62.1 MPa, at glycerol/oil molar ratios between 15–25, and water concentrations of 0–8% (wt% of glycerol). MG, di-, triglyceride, and free fatty acid (FFA) composition of the reaction mixture as a function of time was analyzed by supercritical fluid chromatography. Glycerolysis did not occur at 150°C but proceeded to a limited extent at 200°C within 4 h reaction time; however, it did proceed rapidly at 250°C. At 250°C, MG formation decreased significantly (P<0.05) with pressure and increased with glycerol/oil ratio and water concentration. A maximum MG content of 49.2% was achieved at 250°C, 20.7 MPa, a glycerol/oil ratio of 25 and 4% water after 4 h. These conditions also resulted in the formation of 14% FFA. Conversions of other oils (peanut, corn, canola, and cottonseed) were also attempted. Soybean and cottonseed oil yielded the highest and lowest conversion to MG, respectively. Conducting this industrially important reaction in SC-CO2 atmosphere offered numerous advantages, compared to conventional alkalicatalyzed glycerolysis, including elimination of the alkali catalyst, production of a lighter color and less odor, and ease of separation of the CO2 from the reaction products.  相似文献   

9.
This work demonstrates that response surface methodology (RSM) is a powerful tool for the optimization of the production of distilled MG. Experiments with a centrifugal molecular distillator having an evaporation area of 0.0046 m2 were carried out using RMS to identify operating conditions that can lead to higher MG purity. The independent variables studied were the evaporator temperature (TEV) and the volumetric feed flow rate (Q). The experimental range was from 100 to 300°C for TEV and between 5 and 15 mL/min for Q. High-performance size exclusion chromatography was used to evaluate TG, DG, MG, FFA, and glycerol (GL) compositions. Results were presented as MG concentration surfaces. Starting from a material with 10.8% of TG, 37.7% of DG, 43.6% of MG, and 7.2% of GL, the maximum MG, purity in the distillate stream with just one distillation step was 82.6% at a TEV equal to 250°C and Q equal to 5 mL/min. At these conditions, the MG recovery was 61%. A strategy was developed to obtain distilled MG with 96.3% purity.  相似文献   

10.
High-yield enzymatic glycerolysis of fats and oils   总被引:2,自引:0,他引:2  
Several triglyceride fats and oils were reacted with glycerol using lipase as catalyst. A batch system with magnetic stirring was used without the addition of any solvents or emulsifiers. In all cases a mixture of mono-, di- and triglycerides was obtained. However, the yield of monglyceride (MG) depended strongly on the reaction temperature: at higher temperatures approximately 30% MG was produced at equilibrium while at lower temperatures a yield of 65%–90% MG was obtained for most of the fats examined. The upper temperature limit below which a high MG yield could be attained was designated the critical temperature (Tc). The value of Tc depended on the fat type and was found to vary between 30°C and 46°C for naturally occurring hard fats. A high MG yield could not be obtained for fully hydrogenated tallow and lard under the conditions described here. Of the three liquid oils examined, rapeseed oil and olive oil had a Tc of 5°C and 10°C respectively whereas a high yield of MG could not be obtained with corn oil at 5°C or greater. The maximum yield of MG below Tc also depended on the fat type: the highest yields being obtained for olive oil (90%), palm stearin and milk fat (80%) and the lowest yield for palm oil (67%). In all cases a high yield of MG was accompanied by solidification of the reaction mixture. The effect of enzyme type on MG production was examined for palm oil and palm stearin and the effect of water concentration was examined for palm oil.  相似文献   

11.
Noncatalytic alcoholysis kinetics of soybean oil   总被引:1,自引:0,他引:1  
Reaction kinetics for the alcoholysis of soybean oil with methanol, ethanol, and isopropanol were evaluated in the absence of catalyst. Metal reactor surfaces catalyzed these reactions, so the reactions were conducted in glass capillary tubes at 120, 150, and 180°C. The reactivity of the alcohols increased with decreasing carbon number. Higher temperatures promoted faster reactions. Higher alcohol stoichiometries did not significantly increase reaction rates; this was attributed to the limited solubility of the alcohol in the soybean oil. At less than 20% conversion, the solubility of the alcohol in the oil phase continuously increased, resulting in increased reaction rates. At approximately 20% conversion, the reaction systems became homogeneous until a glycerine phase was formed at high conversions. In addition to their fundamental value, these data provided a basis on which catalytic reactions can be investigated between 100 and 200°C.  相似文献   

12.
The effects of alcohol/oil molar ratio, base concentration, and temperature on the single-phase base-catalyzed ethanolyses of sunflower and canola oils were determined. The use of tetrahydrofuran as co-solvent, as well as higher than usual alcohol/substrate molar ratios, prevented glycerol separation. This allowed each reaction to reach equilibrium rather than just steady-state conditions. High conversions of oil lowered the concentrations of MG and DG surfactants in the products, and thereby mitigated the formation of emulsions usually associated with ethanolysis reactions. An alcohol/oil molar ratio of 25∶1, together with the necessary amount of cosolvent, gave optimal results. At this molar ratio, despite equilibrium being achieved, ethanolysis, unlike methanolysis, did not quite produce biodiesel-standard material, the MG content being approximately 1.5 mass%. For methanolysis and 1-butanolysis, the corresponding values were 0.6 and 2.0 mass%, respectively. The use of 1.4 mass% KOH (equivalent to 1.0 mass% NaOH) led to ethanolysis equilibrium within 6–7 min at 23°C rather than 15 min when only 1.0 mass% was used. At 60°C, equilibrium was reached within only 2 min. Soybean and canola oils behaved the same.  相似文献   

13.
Tuna oil was hydrolyzed withCandida cylindracea lipase. After 70% hydrolysis of the oil, the docosahexaenoic acid (DHA) content in the glyceride mixture [a mixture of TG (triglyceride), DG (diglyceride) and MG (monoglyceride)] was twice that of the original oil. DHA-rich TG and DG were observed, but DHA-rich MG was absent.C. cylin-dracea lipase seemed to have a “triglyceride specificity,” and it favors TG without DHA over TG containing DHA. In accordance with this hypothesis, TG containing a mixture of oleic acid (OA) and DHA was synthesized and then hydrolyzed withC. cylindracea lipase. TGs in the hydrolysis product were fractionated and analyzed quantitatively by high-performance liquid chromatography. Four kinds of TGs were obtained. TG with three molecules of OA was hydrolyzed most easily. Increasing the DHA content of TG resulted in less hydrolysis of TG. The results suggested thatC. cylindracea lipase had a TG specificity for the whole structure of TG in preference to the individual ester bonds; OA coexisting with DHA in TG was resistant toC. cylindracea lipase due to the TG structure.  相似文献   

14.
The kinetics of transesterification of Pongamia oil using methanol at 60°C were studied. The forward as well as the reverse rate constants of all three steps involved in the transesterification of Pongamia oil are reported for the first time. Among the forward rate constants, the one governing the conversion of TG to DG was the highest and the one for DG to MG was the lowest. A distinct feature of the present work is the direct estimation of the equilibrium constants of all three steps by measuring the concentrations of TG, DG, and MG at very long reaction times. This reduced the number of parameters to be, determined from the kinetic data by one-half, thereby leading to more accurate estimation of the rate constants. The equilibrium constant of the final step involving the conversion of MG to methyl ester and glycerol was at least an order of magnitude greater than that of the first two reaction steps. A detailed comparison was made with kinetic parameters reported in literature. The trend in the relative magnitudes of the rate constants appears to be unique to Pongamia oil.  相似文献   

15.
The aims of this study were to prepare organogels from pomegranate seed oil (PO) with carnauba wax (CW) and monoglyceride (MG), compare the organogels with a commercial margarine (CM) and evaluate 3 months storage stability. At 3% organogelator addition, no gels were formed, while at 7 and 10% additions, the oil binding capacities increased and were always higher in CW organogels, with crystal formation times of 8.0 to 14.0 min. Solid fat content (SFC) of the CW organogels varied between 2.96 and 8.71% at 20°C, while MG gels had 2.89–9.43%, and CM had 29.73% SFC. The peak melting temperatures of the CW organogels ranged from 74.73 to 75.74°C and MG organogels ranged from 11.09 to 50.63°C, whereas CM product exhibited 45.92°C peak melting temperature. The hardness of CW organogels was higher than that of MG organogels. The organogels showed potential as spreadable products. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41343.  相似文献   

16.
Double-fractionated palm olein (DfPOo) fractions with iodine values (IV) of 60 and 65 were each blended with low-erucic acid rapeseed (LEAR) oil in various proportions. Clarities of the blends at different temperatures were determined. Maximum levels of DfPOo-IV60 and DfPOo-IV65 in blends that remained clear at 20°C for at least 120 d were 40 and 80%, respectively. At 15°C, the maximum levels were 10 and 40%, and at 10°C, 10 and 20%, respectively. At 5°C, only a blend of 10% DfPOo-IV65 in LEAR remained clear for 120 d. Maximum levels of DfPOo-IV60 and DfPOo-IV65 in blends that passed the cold test were 30% for both palm oleins. Maximum levels of the palm oleins in blends with LEAR were higher than those of blends with soybean oil. Cloud points were lower in palm olein/LEAR blends than those of palm olein/soybean oil blends, probably because LEAR contains less saturated fatty acids than soybean oil.  相似文献   

17.
Genetically modified soybeans were processed into finished, refined, bleached, and deodorized oils. Fatty acid composition was determined by gas-liquid chromatography. Glyceride structure was characterized according to degree of unsaturation by high-performance liquid chromatography, lipase hydrolysis, and gas-liquid chromatography. Compared to common varieties with 15% saturated acids, genetically modified soybeans yielded oils containing 24–40% saturated acids. Several varieties were examined, including the Pioneer A-90, Hartz HS-1, and Iowa State A-6 lines. Pioneer A-90 contained 17% stearic acid, had a solid fat index (SFI) of 6.0 at 10°C (50°F) and zero from 21.1 to 40°C (70 to 104°F), and therefore lacked sufficient solids for tub-type margarine. To improve its plastic range, the Pioneer oil was blended with palm oil, randomized palm oil, or interesterified palm/soy trisaturate basestock. After blending with 10–40% of these components, the high-stearic acid oil had an SFI profile suitable for soft tube margarine. The A-6 varieties, 32–38% saturates, showed SFI profiles with sufficient solids at 10°C (50°F) and 21.1°C (70°F) to qualify as a stick-type margarine oil, but lacked sufficient solids at 33.3°C (92°F); however, after small amounts (2–3%) of cottonseed or soybean hardstocks were added, the A-6 oils qualified as stick margarine oil. The HS-1 variety, when blended with small amounts (2–3%) of hardstock, possessed sufficient solids at 10°–33.3°C (50–92°F) to prepare soft tub margarine oil. Presented at the AOCS Annual Meeting & Expo, San Antonio, Texas, May 8–12, 1995.  相似文献   

18.
To investigate the feasibility of industrial hydrolysis of tallow in an immobilized-lipase bioreactor, a pilot plant was operated continuously at one gram/min for more than one year. A new thin-layer chromatography (TLC) method was employed for analysis of the composition of the product. Data were reduced by averaging, categorizing, and averaging again. The reduced data were used to calculate rates of the three individual reactions: hydrolysis of triacylglycerol (TG) to diacylglycerol (DG) and free fatty acid (FFA), hydrolysis of DG to monoacylglycerol (MG) and FFA, and hydrolysis of MG to glycerol and FFA. It was concluded that separation of mono- and diacylglycerol from FFA and triacylglycerol would be required to achieve a high concentration of FFA in the product.  相似文献   

19.
Enzyme-assisted aqueous extraction of oil from isolated soybean oleosomes was evaluated as an alternative to the conventional organic solvent extraction. Three different processes: hydrolysis of oleosomes, thermal demulsification of the skim or the slurry, and destabilization of the cream by the churning butter process were examined to enhance the release of free oil from isolated oleosomes. The oil extraction involved incubating the oleosomes with either 0, 2.5 or 5% protease (Protex 6L®) at 60 °C, pH 9 for 18 h, destabilizing the slurry by three thermal strategies: freeze/thaw, freeze/thaw and heating, and destabilizing the cream by the churning butter process without and with 5% of phospholipase A2 (Multifect L1 10L®), at 40 °C, pH 8 for 4 h. The best total free oil yield was 83–88% by hydrolyzing oleosomes with 2.5 or 5% Protex 6L®, destabilizing the slurries by heating and destabilizing the resulting cream by the churning butter process. The oleosomes treated with 2.5 and 5% proteases generated hydrolyzed soybean storage proteins at 18–20% degree of hydrolysis, with all the storage proteins hydrolyzed to peptides smaller than 6.5 kDa, compared to the oleosomes disrupted without proteases.  相似文献   

20.
Production of MAG by glycerolysis is important for food, pharmaceutical, and cosmetic industries. Conducting glycerolysis in supercritical carbon dioxide (SC-CO2) media has advantages over conventional alkali-catalyzed glycerolysis. However, kinetic data are lacking for such conversions in the presence of SC-CO2. The objectives of this study were to estimate the rate constants and elucidate the mechanism for the glycerolysis of soybean oil in SC-CO2 using previously reported data. The data were taken from experiments using soybean oil, glycerol (glycerol/oil molar ratios of 15–25) and water (3–8% w/w) in SC-CO2 at 20.7–62.1 MPa and 250°C for a 4 h period. Rate constants for the parallel glycerolysis and hydrolysis reactions were estimated for each processing parameter (glycerol/oil, water content, pressure) by minimizing the summed squared error between the values calculated from the experimental data and those obtained from the kinetic model. The results suggested that water and pressure had an effect on rate constants but the glycerol/oil ratio did not. Findings provide the kinetic modeling data necessary for the optimization of supercritical processes involving glycerolysis reactions for the production of MAG from vegetable oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号