首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancement in heat transfer of the cold side is vital to amplify the performance of a thermoelectric generator (TEG). With enriched thermophysical properties of nanofluids, significant improvement in heat transfer process can be obtained. The current study concerns the performance comparison of an automobile waste heat recovery system with EG‐water (EG‐W) mixture, ZnO, and SiO2 nanofluid as coolants for the TEG system. The effects on performance parameters, that is, circuit voltage, conversion efficiency, and output power with exhaust inlet temperature, the total area of TEG, Reynolds number, and particle concentration of nanofluids for the TEG system have been investigated. A detailed performance analysis revealed an increase in voltage, power output, and conversion efficiency of the TEG system with SiO 2 nanofluid, followed by ZnO and EG‐W coolants. The electric power and conversion efficiency for SiO 2 nanofluid at an exhaust inlet temperature of 500K were enhanced by 11.80% and 11.39% respectively, in comparison with EG‐W coolants. Moreover, the model speculates that an optimal total area of TEGs exists for the maximum power output of the system. With SiO 2 nanofluid as a coolant, the total area of TEGs can be diminished by up to 34% as compared with EG‐W, which brings significant convenience for the placement of TEGs and reduces the cost of the TEG system.  相似文献   

2.
Nuclear power is most suited to satisfy the energy demands of future deep space exploration. In this paper, we propose a static nuclear reactor (the nuclear static thermoelectric reactor [NUSTER]), which offers the advantages of superior modularization, simplification, a fully static state, and passive operation. Based on the conceptual design of a static nuclear reactor, an electrical heating principle prototype was designed and fabricated to validate the feasibility of the fully static passive energy conversion concept. Skutterudite thermoelectric generators (TEGs) were used for static energy conversion, and potassium heat pipes were employed for passive heat transfer. The system start-up performance, restart performance, and thermoelectric performance were investigated using the thermal principle prototype. We proposed a new approach to analyze the heat pipe start-up process based on the heat transfer performance. The experimental results indicated that the restart process can be used to reduce the start-up time, because the low heat flux stage is avoided. During the start-up process, the TEGs hot side heat flux and temperature difference were gradually established, and the TEGs open circuit voltage and power density gradually increased. A maximum open circuit voltage and power density of 38.2 V and 0.92 W/cm2, respectively, were achieved when the TEGs temperature difference reached 575°C. The high performance of the thermal principle prototype demonstrated the feasibility of the NUSTER conceptual design, and the experimental data can serve as a valuable reference for optimization of static reactor designs.  相似文献   

3.
In this case study, a system to recover waste heat comprised 24 thermoelectric generators (TEG) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. A slopping block is designed on the basis of simulation results to uniform the interior thermal field that improves the performance of TEG modules. Besides simulations, the system is designed and assembled. Measurements followed the connection of the system to the middle of an exhaust pipe. Open circuit voltage and maximum power output of the system are characterized as a function of temperature difference. Through these simulations and experiments, the power generated with a commercial TEG module is presented. Overview this case study and our previous work, the results establish the fundamental development of low-temperature waste heat thermoelectric generator system that enhances the TEG efficiency for vehicles.  相似文献   

4.
Over two-thirds energy of fuel consumed by an automobile is discharged to the surroundings as waste heat. The fuel usage can be more efficient if thermoelectric generators (TEG) are used to convert heat energy into electricity. In this study, a thermoelectric module composed of thermoelectric generators and a cooling system is developed to improve the efficiency of an IC engine. Two potential positions on an automobile are chosen to apply this module, e.g. exhaust pipe and radiator to examine the feasibility. To predict the behaviors of this module, a one dimensional thermal resistance model is also build, and the results are verified with experiments.  相似文献   

5.
There is a significant push to increase the output power of thermoelectric generators (TEGs) in order to make them more competitive energy harvesters. The thermal coupling of TEGs has a major impact on the effective temperature gradient across the generator and therefore the power output achieved. The application of micro fluidic heat transfer systems (μHTS) can significantly reduce the thermal contact resistance and thus enhance the TEG's performance. This paper reports on the characterization and optimization of a μTEG integrated with a two layer μHTS. The main advantage of the presented system is the combination of very low heat transfer resistances with small pumping powers in a compact volume. The influence of the most relevant system parameters, i.e. microchannel width, applied flow rate and the μTEG thickness on the system's net output performance are investigated. The dimensions of the μHTS/μTEG system can be optimized for specific temperature application ranges, and the maximum net power can be tracked by adjusting the heat transfer resistance during operation. A system net output power of 126 mW/cm2 was achieved with a module ZT of 0.1 at a fluid flow rate of 0.07 l/min and an applied temperature difference of 95K.It was concluded that for systems with good thermal coupling, the thermoelectric material optimization should focus more on the power factor than on the figure of merit ZT itself, since the influence of the thermal resistance of the TE material is negligible.  相似文献   

6.
Thermoelectric generator (TEG) is a promising thermoelectric (TE) conversion technology to effectively recover and convert waste heat from vehicle exhaust into useful energy, ie, electricity. Exhaust TEG (ETEG) is a system that is incorporated into the exhaust manifold of a vehicle. Exhaust TEG comprises of a heat exchanger, TEG modules, heat sink, and power conditioning unit. The present work reviews different vehicular ETEGs based on engine type, engine‐rated power, type and number of TEG module, efficiency of ETEG and TEG, exhaust and coolant temperature, and power output of ETEG . In addition to these, the technical issues faced in these ETEGs are addressed under 2 categories, viz., primary (TEG with low ZT TE material and inefficient heat exchanger and heat sink) and secondary issues (low operating temperature TEG modules and installation position of ETEG). In addition to it, effects of vibration and thermal cycling of exhaust system on TEG modules that may arise in ETEG are also discussed. A review of preventive solutions to the issues is also presented. Finally, the economic aspects of an ETEG are also discussed. The review highlights the need of commercialization of TE materials with ZT > 2, high‐temperature operating range, and segmented TEG modules in large volumes so that their practice can be extended in vehicular applications. Heat exchanger modeling using computational fluid dynamics and interfacing with heat transfer theory is essential to maintain temperature uniformity across the TEG modules. Installation of ETEG in the exhaust pipe should be such that it does not affect the performance of the engine. It is also realized that sturdy TEG modules should be developed for long‐term operation to prevent degradation due to mechanical vibration and thermal cycling of the vehicle. Further, ETEG is economically beneficial in vehicles such as trucks owing to availability of high thermal energy in their exhaust stream.  相似文献   

7.
A thermoelectric generator (TEG) module is designed to harvest low grade waste heat from a 2 kW fuel cell vehicle and improve its energy utilization. The module integrates a TEG cell with a heat pipe and a finned heat sink. A numerical model is developed based on an experiment setup where the fuel cell temperature is 45–60 °C while the cruise speed is 25 kmh?1. The numerical model is validated with less than 5% deviation. Extended cases are simulated for series and parallel power train configuration under changes to the waste heat temperature and vehicle speeds to evaluate the power and heat recovery ratio. A single TEG cell output between 2 and 3 W is achievable even at low grade heat. The parallel drive generates 50% more power than the series drive at 100 kmh?1 speed. A 2% heat recovery is theoretically achievable for a 16 cell module assembly.  相似文献   

8.
Microheat pipe cooled reactor power source (HRP) designed for space or underwater vehicles meets the future demands, such as safer structure, longer operating time, and fewer mechanical moving parts. In this paper, potassium heat pipe cooled reactor power source system which generates 50 kWe electricity is proposed. The reactor core using uranium nitride fuel is cooled by 37 potassium high‐temperature heat pipes. The shields are designed as tungsten and water, and reactor reactivity is controlled by control drums. The thermoelectric generator (TEG) consists of thermoelectric conversion units and seawater cooler. The thermoelectric conversion units convert thermal energy to electric energy through the high‐performance thermoelectric material. A code applied for designing and analyzing the reactor power system is developed. It consists of multichannel reactor core model, heat pipe model using thermal resistance network, thermoelectric conversion, and thermal conductivity model. Then, the sensitivity analysis is performed on two key parameters including the length of the heat pipe condensation section and the cold junction temperature of the TE cell. Meanwhile, the steady‐state calculations are conducted. Results show that the maximum fuel temperature is 938 K located in the center of reactor core and the outlet temperature of coolant reaches 316 K. Both of them are within the limitation. It is concluded that the preliminary design of HPR design is reasonable and reliable. The designed residual heat removal system has sufficient safety margin to release the decay heat of the reactor. This research provides valuable analysis for the application of micronuclear power source.  相似文献   

9.
Employing thermoelectric generators (TEGs) to gather heat dissipating from the human body through the skin surface is a promising way to supply electronic power to wearable and pocket electronics. The uniqueness of this method lies in its direct utilization of the temperature difference between the environment and the human body, and complete elimination of power maintenance problems. However, most of the previous investigations on thermal energy harvesters are confined to the TEG and electronic system themselves because of the low quality of human energy. We evaluate the energy generation capacity of a wearable TEG subject to various conditions based on biological heat transfer theory. Through numerical simulation and corresponding parametric studies, we find that the temperature distribution in the thermopiles affects the criterion of the voltage output, suggesting that the temperature difference in a single point can be adopted as the criterion for uniform temperature distribution. However, the criterion has to be shifted to the sum of temperature difference on each thermocouple when the temperature distribution is inconsistent. In addition, the performance of the thermal energy harvester can be easily influenced by environmental conditions, as well as the physiological state and physical characteristics of the human body. To further validate the calculation results for the wearable TEG, a series of conceptual experiments are performed on a number of typical cases. The numerical simulation provides a good overview of the electricity generation capability of the TEG, which may prove useful in the design of future thermal energy harvesters.  相似文献   

10.
Dan Dai  Yixin Zhou  Jing Liu 《Renewable Energy》2011,36(12):3530-3536
A new type of thermoelectric generator (TEG) system based on liquid metal which serves to harvest and transport waste heat, is proposed in this paper. To demonstrate the feasibility of the new TEG system, an experimental prototype which combined commercially available thermoelectric (TE) modules with the electromagnetic pump was set up. Output voltage from TE modules and temperature changes of the main parts (waste heat source, liquid metal heating plate, water-cooling plates I and II) of the liquid metal based TEG system were experimentally measured, as well as the flow rate of cooling water and the load resistance. It was shown that the maximum open-circuit voltage of 34.7 V was obtained when the temperature of the waste heat source was 195.9 °C and the temperature gap between liquid metal heating plate and cooling-water plates was nearly 100 °C. These experimental results obviously verify that using liquid metal based TEG system for waste heat recovery is highly feasible. In addition, the TEG system performance is discussed and a calculated efficiency of 2% in the whole TEG system is obtained. Possible suggestions to further improve this type of generator in the future are given.  相似文献   

11.
In China, because of the emergence of a large number of high‐rise buildings, the solar hot water heater system often uses the balcony wall‐mounted method for installation. The thermoelectric energy converter is proposed as one of the possible technologies to incorporate solar water heater to produce electricity for building application. In this paper, the conceptual development and theoretical analysis of a novel micro‐channel heat pipe evacuated tube solar collector‐incorporated thermoelectric generation are all proposed. The new system takes into account many advantages, including the high heat transfer, low convective heat loss, and low contact thermal resistance. The exergy analysis method based on the second law of thermodynamics is also introduced to evaluate the performance of this system. The results show that a novel micro‐channel heat pipe evacuated tube solar collector‐incorporated thermoelectric generation has a high thermal performance with addition of electricity production. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes a solar heat pipe thermoelectric generator (SHP-TEG) unit comprising an evacuated double-skin glass tube, a finned heat pipe and a TEG module. The system takes the advantage of heat pipe to convert the absorbed solar irradiation to a high heat flux to meet the TEG operating requirement. An analytical model of the SHP-TEG unit is presented for the condition of constant solar irradiation, which may lead to different performance characteristics and optimal design parameters compared with the condition of constant temperature difference usually dealt with in other studies. The analytical model presents the complex influence of basic parameters such as solar irradiation, cooling water temperature, thermoelement length and cross-section area and number of thermoelements, etc. on the maximum power output and conversion efficiency of the SHP-TEG. Simulation based on the analytical model has been carried out to study the performance and design optimization of the SHP-TEG.  相似文献   

13.
This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance of the model accuracy and the optimization on system configuration. Future studies will concentrate on heat exchanger structures.  相似文献   

14.
新型发动机排气温差发电器结构探索   总被引:3,自引:2,他引:1  
刘红武  张征 《节能技术》2006,24(6):507-509
根据汽车发动机排气可利用能量的形式,提出了一种新型的置于排气通道内的热电转换系统,使热电偶与热气流直接进行对流/辐射换热,将强化热流密度和转换电流密度、提高系统的温差。在使用现有热电材料的条件下,提高温差发电器的功率密度。  相似文献   

15.
Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m2, the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m2, the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m2, the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged.  相似文献   

16.
当前我国的能源形势紧张,能源利用状况令人担忧.在一些高耗能的企业,工业生产中排放的中低温烟气余热由于回收难度高、回收成本大等问题,一直得不到合理的利用,如何合理回收成为亟待解决的难题之一.简要介绍了一种新型余热利用换热设备——径向热管换热器,提出了计算热管换热器经济性评价指标的方法,并以某工厂低温烟气余热回收工程为实例,对烟气余热的回收利用进行了技术和经济效益分析.实践应用证明,径向热管换热器在工业低温烟气余热回收中有很好的实用性和可行性.  相似文献   

17.
We examine the volume power density of radial thermoelectric generators (TEGs). Radial, or tubular, TEGs have been considered as an alternative to the usual flat-plate TEGs due to its improved geometric match to typical curved heat sources and high surface power density. However, surface power density is not the only important performance index in realistic situations. Especially for TEGs with inorganic materials that have high raw material prices, volume power density can be important as well. In this note, an analytic model of a radial TEG is studied with a numerical trial-and-error approach for investigating its volume power density. At the same time, an alternative, approximate method of estimating the maximum power of the radial TEG is presented. Using these two approaches, we estimate the volume power density of a skutterudite-based radial TEG and compare the results to those of a flat-plate TEG. The volume power density of the radial TEG is significantly lower than that of the flat-plate TEG. For example, our calculation for a representative case with free convection on the cold side shows that the volume power density of the radial TEG will be 107 W/m3 at best. The result improves with forced convection, and our calculation for a representative case with forced convection on the cold side exhibits the maximum volume power density of 24 100 W/m3 . All these values turn out to be smaller roughly by one order of magnitude than the maximum volume power densities of comparable flat-plate TEGs. Such a low volume power density indicates lower economic feasibility of the radial TEG with expensive inorganic thermoelectric materials. This is also explicitly discussed by presenting the high cost per watt of the radial TEG. It is therefore suggested that radial TEGs with less expensive organic materials may be more acceptable than those with inorganic ones.  相似文献   

18.
Heat pipe utilizes continuous phase change process within a small temperature drop to achieve high thermal conductivity. For decades, heat pipes coupled with novel emerging technologies and methods (using nanofluids and self-rewetting fluids) have been highly appreciated, along with which a number of advances have taken place. In addition to some typical applications of thermal control and heat recovery, the heat pipe technology combined with the sorption technology could efficiently improve the heat and mass transfer performance of sorption systems for heating, cooling and cogeneration. However, almost all existing studies on this combination or integration have not concentrated on the principle of the sorption technology with acting as the heat pipe technology for continuous heat transfer. This paper presents an overview of the emerging working fluids, the major applications of heat pipe, and the advances in heat pipe type sorption system. Besides, the ongoing and perspectives of the solid sorption heat pipe are presented, expecting to serve as useful guides for further investigations and new research potentials.  相似文献   

19.
Efficiency of energy conversion processes can be improved if waste heat is converted to electricity. A thermoelectric generator (TEG) can directly convert waste heat to electricity. The TEG typically suffers from low efficiency due to various reasons, such as ohmic heating, surface-to-surrounding convection losses, and unfavorable material properties. In this work, the effect of surface-to-surrounding convection heat transfer losses on the performance of TEG is studied analytically and numerically. A one-dimensional (1-D) analytical model is developed that includes surface convection, conduction, ohmic heating, and Peltier, Seebeck, and Thomson effects with top and bottom surfaces of TEG exposed to convective boundary conditions. Using the analytical solutions, different performance parameters (e.g., heat input, power output, and efficiency) are calculated and expressed graphically as functions of thermal source and sink temperatures and convection heat transfer coefficient. Finally, a two-dimensional (2-D) mathematical model is solved numerically to observe qualitative results of thermal and electric fields inside the TEG. For all calculations, temperature-dependent thermal/electric properties are considered. Increase in thermal source temperature results in an increase in the power output with adiabatic side wall conditions. A change in boundary condition to convection heat transfer from adiabatic boundary has a large impact on thermal efficiency.  相似文献   

20.
Utilization of a broad range of solar spectrum has the potential for high power output from solar cells. However, solar photovoltaics (PVs) can convert only part of the solar electromagnetic spectrum into electricity efficiently. The remaining of the solar radiation is often dissipated in the form of heat, which causes performance reduction and reduces the life expectancy of the solar PV cell. Thermoelectric generators (TEGs) are devices that operate like a heat engine by converting thermal energy into electricity through thermoelectric effect. Integrating a TEG into a PV converter will enhance its efficiency and reduce the amount of heat dissipated. Different studies have been carried out and are still taking place to increase the total efficiency of a coupled photovoltaic thermoelectric generator (PV-TEG) system. This review discusses the concept of PV converters and thermoelectric devices and presents the various models and numerical and experimental investigations on performance enhancement of integrated PV-TEGs. The influence of key parameters on the performance of PV-TEG were also discussed. The review is expected to serve as a reference to recent work on research and development of integrated PV-TEG systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号