共查询到20条相似文献,搜索用时 0 毫秒
1.
针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射后,映射到一个高维的核空间,突出不同类别样本之间的特征差异,使得原来线性不可分的样本点在核空间中变得更加线性可分,从而更好地聚类。经仿真实验表明,基于核的可能性聚类算法比模糊C-均值以及可能性聚类算法具有更好的聚类效果,且算法能够很快地收敛。 相似文献
2.
Zhimin Wang Qing Song Yeng Chai Soh Kang Sim 《Computer Vision and Image Understanding》2013,117(10):1412-1420
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type algorithms. By combining these two concepts and modifying the objective function of the FCM algorithm, we are able to solve the problems of sensitivity to noisy data and the lack of spatial information, and improve the image segmentation results. The experimental results have shown that this robust clustering algorithm is useful for MRI brain image segmentation and it yields better segmentation results when compared to the conventional FCM approach. 相似文献
3.
《Information Processing Letters》2014,114(6):287-293
The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms. 相似文献
4.
改进的遗传模糊聚类算法对医学图像的分割 总被引:1,自引:0,他引:1
利用遗传算法全局随机搜索的特点,可以解决模糊C均值聚类(FCM)算法在医学图像分割中容易陷入局部最优解的问题,但确定遗传算法的初始搜索范围时,需要借助于人的经验。为此,用收敛速度快的硬聚类算法得到的聚类中心作为参考,上下浮动划出一个较小的数据范围,作为遗传算法的初始搜索空间。该方法在避免FCM算法陷入局部最优化的同时,也加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊算法,效果要好得多。 相似文献
5.
6.
This article describes a multiobjective spatial fuzzy clustering algorithm for image segmentation. To obtain satisfactory segmentation performance for noisy images, the proposed method introduces the non-local spatial information derived from the image into fitness functions which respectively consider the global fuzzy compactness and fuzzy separation among the clusters. After producing the set of non-dominated solutions, the final clustering solution is chosen by a cluster validity index utilizing the non-local spatial information. Moreover, to automatically evolve the number of clusters in the proposed method, a real-coded variable string length technique is used to encode the cluster centers in the chromosomes. The proposed method is applied to synthetic and real images contaminated by noise and compared with k-means, fuzzy c-means, two fuzzy c-means clustering algorithms with spatial information and a multiobjective variable string length genetic fuzzy clustering algorithm. The experimental results show that the proposed method behaves well in evolving the number of clusters and obtaining satisfactory performance on noisy image segmentation. 相似文献
7.
An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering 总被引:2,自引:0,他引:2
Taher Niknam Elahe Taherian FardNarges Pourjafarian Alireza Rousta 《Engineering Applications of Artificial Intelligence》2011,24(2):306-317
Clustering techniques have received attention in many fields of study such as engineering, medicine, biology and data mining. The aim of clustering is to collect data points. The K-means algorithm is one of the most common techniques used for clustering. However, the results of K-means depend on the initial state and converge to local optima. In order to overcome local optima obstacles, a lot of studies have been done in clustering. This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Modify Imperialist Competitive Algorithm (MICA) and K-means (K), which is called K-MICA, for optimum clustering N objects into K clusters. The new Hybrid K-ICA algorithm is tested on several data sets and its performance is compared with those of MICA, ACO, PSO, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS), Honey Bee Mating Optimization (HBMO) and K-means. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handling data clustering. 相似文献
8.
Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm 总被引:2,自引:0,他引:2
A modified differential evolution (DE) algorithm is presented for clustering the pixels of an image in the gray-scale intensity space. The algorithm requires no prior information about the number of naturally occurring clusters in the image. It uses a kernel induced similarity measure instead of the conventional sum-of-squares distance. Use of the kernel function makes it possible to partition data that is linearly non-separable and non hyper-spherical in the original input space, into homogeneous groups in a transformed high-dimensional feature space. A novel search-variable representation scheme is adopted for selecting the optimal number of clusters from several possible choices. Extensive performance comparison over a test-suite of 10 gray-scale images and objective comparison with manually segmented ground truth indicates that the proposed algorithm has an edge over a few state-of-the-art algorithms for automatic multi-class image segmentation. 相似文献
9.
一种能量高效的无线传感器网络分簇路由算法 总被引:2,自引:0,他引:2
无线传感器网络中节点的能量有限,提高能量的有效性便成为无线传感器网络路由协议设计的首要目标。设计了一种能量高效的分簇路由算法,它提出让候选节点在一定的覆盖范围内以剩余能量为标准来竞选簇头,以使簇头分布均匀;处于簇类交界的节点则根据能量和距离来选择归属的簇头,以平衡网络负载;新算法还采用多跳的簇间通信方式来降低大部分簇头节点的通信负载。仿真结果表明:新算法能够有效降低网络能耗,延长网络生存时间。 相似文献
10.
11.
D.A. Clausi 《Pattern recognition》2002,35(9):1959-1972
The K-means Iterative Fisher (KIF) algorithm is a robust, unsupervised clustering algorithm applied here to the problem of image texture segmentation. The KIF algorithm involves two steps. First, K-means is applied. Second, the K-means class assignments are used to estimate parameters required for a Fisher linear discriminant (FLD). The FLD is applied iteratively to improve the solution. This combined K-means and iterative FLD is referred to as the KIF algorithm. Two KIF implementations are presented: a mixture resolving approach is extended to an unsupervised binary hierarchical approach. The same binary hierarchical KIF algorithm is used to properly segment images even though the number of classes, the class spatial boundaries, and the number of samples per class vary. The binary hierarchical KIF algorithm is fully unsupervised, requires no a priori knowledge of the number of classes, is a non-parametric solution, and is computationally efficient compared to other methods used for clustering in image texture segmentation solutions. This unsupervised methodology is demonstrated to be an improvement over other published texture segmentation results using a wide variety of test imagery. Gabor filters and co-occurrence probabilities are used as texture features. 相似文献
12.
Weiling Cai Author Vitae Author Vitae Daoqiang Zhang Author Vitae 《Pattern recognition》2007,40(3):825-838
Fuzzy c-means (FCM) algorithms with spatial constraints (FCM_S) have been proven effective for image segmentation. However, they still have the following disadvantages: (1) although the introduction of local spatial information to the corresponding objective functions enhances their insensitiveness to noise to some extent, they still lack enough robustness to noise and outliers, especially in absence of prior knowledge of the noise; (2) in their objective functions, there exists a crucial parameter α used to balance between robustness to noise and effectiveness of preserving the details of the image, it is selected generally through experience; and (3) the time of segmenting an image is dependent on the image size, and hence the larger the size of the image, the more the segmentation time. In this paper, by incorporating local spatial and gray information together, a novel fast and robust FCM framework for image segmentation, i.e., fast generalized fuzzy c-means (FGFCM) clustering algorithms, is proposed. FGFCM can mitigate the disadvantages of FCM_S and at the same time enhances the clustering performance. Furthermore, FGFCM not only includes many existing algorithms, such as fast FCM and enhanced FCM as its special cases, but also can derive other new algorithms such as FGFCM_S1 and FGFCM_S2 proposed in the rest of this paper. The major characteristics of FGFCM are: (1) to use a new factor Sij as a local (both spatial and gray) similarity measure aiming to guarantee both noise-immunity and detail-preserving for image, and meanwhile remove the empirically-adjusted parameter α; (2) fast clustering or segmenting image, the segmenting time is only dependent on the number of the gray-levels q rather than the size N(?q) of the image, and consequently its computational complexity is reduced from O(NcI1) to O(qcI2), where c is the number of the clusters, I1 and are the numbers of iterations, respectively, in the standard FCM and our proposed fast segmentation method. The experiments on the synthetic and real-world images show that FGFCM algorithm is effective and efficient. 相似文献
13.
《Expert systems with applications》2014,41(9):4083-4093
Suppressed fuzzy c-means clustering algorithm (S-FCM) is one of the most effective fuzzy clustering algorithms. Even if S-FCM has some advantages, some problems exist. First, it is unreasonable to compulsively modify the membership degree values for all the data points in each iteration step of S-FCM. Furthermore, duo to only utilizing the spatial information derived from the pixel’s neighborhood window to guide the process of image segmentation, S-FCM cannot obtain satisfactory segmentation results on images heavily corrupted by noise. This paper proposes an optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation to solve the above drawbacks of S-FCM. Firstly, an optimal-selection-based suppressed strategy is presented to modify the membership degree values for data points. In detail, during each iteration step, all the data points are ranked based on their biggest membership degree values, and then the membership degree values of the top r ranked data points are modified while the membership degree values of the other data points are not changed. In this paper, the parameter r is determined by the golden section method. Secondly, a novel gray level histogram is constructed by using the self-tuning non local spatial information for each pixel, and then fuzzy c-means clustering algorithm with the optimal-selection-based suppressed strategy is executed on this histogram. The self-tuning non local spatial information of a pixel is derived from the pixels with a similar neighborhood configuration to the given pixel and can preserve more information of the image than the spatial information derived from the pixel’s neighborhood window. This method is applied to Berkeley and other real images heavily contaminated by noise. The image segmentation experiments demonstrate the superiority of the proposed method over other fuzzy algorithms. 相似文献
14.
15.
16.
17.
针对无线传感器网络能量约束问题,提出了一种基于花型的分簇算法。算法结合最优簇数目计算与用正六边形网格实现无缝覆盖的思想,分簇过程中通过标号方法从花芯区域中选取剩余能量最大的节点当选为簇头。仿真实验结果表明:该算法在一定程度上减少了网络的能量消耗、延长了网络的寿命,分簇性能良好。 相似文献
18.
针对不确定数据流上的聚类问题提出一种不确定数据流子空间聚类算法UDSSC.该算法使用滑动窗口机制接收新到达的数据,剔除陈旧的数据;还引入子空间簇生成策略和新型离群点机制;系统建立了三个缓冲区分别存储新到来的元组、要进行聚类的元组和离群点元组,以此获得高质量的聚类结果.实验表明,UDSSC算法与同类型算法相比,具有更好的聚类效果、更低的时间复杂度和更强的扩展性. 相似文献
19.
20.
一种基于类别融合的模糊最小最大聚类算法 总被引:1,自引:1,他引:1
提出了一种新型的基于类别融合的模糊最小最大聚类算法,该算法首先使用初始类别生成子算法对归一化后的数据集进行预处理,从而生成一系列初始模式类别;然后利用类别融合于算法,将类别融合问题转化为求一无向图的连通子图问题,从而得出在同一连通子图中的点融合为同一类,连接子图的数目为最终的聚类数目。仿真结果表明,在处理未知模式类别数目且数据样本任意分布的数据集时,该算法明显优于传统的模糊C均值算法。 相似文献