共查询到20条相似文献,搜索用时 15 毫秒
1.
针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射后,映射到一个高维的核空间,突出不同类别样本之间的特征差异,使得原来线性不可分的样本点在核空间中变得更加线性可分,从而更好地聚类。经仿真实验表明,基于核的可能性聚类算法比模糊C-均值以及可能性聚类算法具有更好的聚类效果,且算法能够很快地收敛。 相似文献
2.
3.
可能性C均值聚类算法(PCM)中模糊加权指标m要求大于1,通过对PCM算法的分析讨论,将PCM算法中模糊加权指标m设置为多个独立变量,且将其取值范围进行了扩展,称之为广义可能性C均值聚类(GPCM)。GPCM从理论上分析了加权指标m的扩展取值范围,并利用粒子群算法(PSO)对样本模糊隶属度进行估计。GPCM算法突破了PCM算法对参数m的约束。仿真实验验证了所提算法的有效性。 相似文献
4.
基于PSO的模糊C-均值聚类算法的图像分割 总被引:3,自引:0,他引:3
根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法更加稳定。实验结果反映了该方法的有效性。 相似文献
5.
In this study, we propose a new robust Fuzzy C-Means (FCM) algorithm for image segmentation called the patch-based fuzzy local similarity c-means (PFLSCM). First of all, the weighted sum distance of image patch is employed to determine the distance of the image pixel and the cluster center, where the comprehensive image features are considered instead of a simple level of brightness (gray value). Second, the structural similarity (SSIM) index takes into account similar degrees of luminance, contrast, and structure of image. The DSSIM (distance for structural similarity) metric is developed on a basis of SSIM in order to characterize the distance between two pixels in the whole image. Next a new similarity measure is proposed. Furthermore, a new fuzzy coefficient is proposed via the new similarity measure together with the weighted sum distance of image patch, and then the PFLSCM algorithm is put forward based on the idea of image patch and this coefficient. Through a collection of experimental studies using synthetic and publicly available images, we demonstrate that the proposed PFLSCM algorithm achieves improved segmentation performance in comparison with the results produced by some related FCM-based algorithms. 相似文献
6.
经典的模糊C-均值聚类算法存在对噪声数据较为敏感、未考虑样本属性特征间的不平衡性及对高维数据聚类不理想等问题,而可能性聚类算法虽然解决了噪声敏感和一致性聚类问题,但算法假定每个样本对聚类的贡献程度一样。针对以上问题,提出了一种基于样本-特征加权的可能性模糊核聚类算法,将可能性聚类应用到模糊聚类中以提高其对噪声或例外点的抗干扰能力;同时,根据不同类的具体特性动态计算样本各个属性特征对不同类别的重要性权值及各个样本对聚类的重要性权值,并优化选取核参数,不断修正核函数把原始空间中非线性可分的数据集映射到高维空间中的可分数据集。实验结果表明,基于样本-特征加权模糊聚类算法能够减少噪声数据和例外点的影响,比传统的聚类算法具有更好的聚类准确率。 相似文献
7.
基于空间信息的可能性模糊C均值聚类遥感图像分割 总被引:1,自引:0,他引:1
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 相似文献
8.
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 相似文献
9.
目的 为了进一步提高噪声图像分割的抗噪性和准确性,提出一种结合类内距离和类间距离的改进可能聚类算法并将其应用于图像分割。方法 该算法避免了传统可能性聚类分割算法中仅仅考虑以样本点到聚类中心的距离作为算法的测度,将类内距离与类间距离相结合作为算法的新测度,即考虑了类内紧密程度又考虑了类间离散程度,以便对不同的聚类结构有较强的稳定性和更好的抗噪能力,并且将直方图融入可能模糊聚类分割算法中提出快速可能模糊聚类分割算法,使其对各种较复杂图像的分割具有即时性。结果 通过人工合成图像和实际遥感图像分割测试结果表明,本文改进可能聚类算法是有效的,其分割轮廓清晰,分类准确且噪声较小,其误分率相比其他算法至少降低了2个百分点,同时能获得更满意的分割效果。结论 针对模糊C-均值聚类分割算法和可能性聚类分割算法对于背景和目标颜色相近的图像分类不准确的缺陷,将类内距离与类间距离相结合作为算法的测度有效的解决了图像分割归类问题,并且结合直方图提出快速可能模糊聚类分割算法使其对于大篇幅复杂图像也具有适用性。 相似文献
10.
In this paper, a new approach for fault detection and isolation that is based on the possibilistic clustering algorithm is proposed. Fault detection and isolation (FDI) is shown here to be a pattern classification problem, which can be solved using clustering and classification techniques. A possibilistic clustering based approach is proposed here to address some of the shortcomings of the fuzzy c-means (FCM) algorithm. The probabilistic constraint imposed on the membership value in the FCM algorithm is relaxed in the possibilistic clustering algorithm. Because of this relaxation, the possibilistic approach is shown in this paper to give more consistent results in the context of the FDI tasks. The possibilistic clustering approach has also been used to detect novel fault scenarios, for which the data was not available while training. Fault signatures that change as a function of the fault intensities are represented as fault lines, which have been shown to be useful to classify faults that can manifest with different intensities. The proposed approach has been validated here through simulations involving a benchmark quadruple tank process and also through experimental case studies on the same setup. For large scale systems, it is proposed to use the possibilistic clustering based approach in the lower dimensional approximations generated by algorithms such as PCA. Towards this end, finally, we also demonstrate the key merits of the algorithm for plant wide monitoring study using a simulation of the benchmark Tennessee Eastman problem. 相似文献
11.
为提高故障诊断模式分类的实时性和准确性,采用阈值化类内距离的方法,研究了一种新型SFCM聚类算法,数据验证了此算法较传统FCM算法在收敛速度和聚类精度方面的较好表现,以机载武器控制系统信息通道为诊断对象,采用该方法对通道进行了样本无监督分类验证和故障模式识别诊断试验,结果表明新型的SFCM聚类算法能对信息通道故障模式进行正确的分类识别。 相似文献
12.
Zhimin Wang Qing Song Yeng Chai Soh Kang Sim 《Computer Vision and Image Understanding》2013,117(10):1412-1420
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type algorithms. By combining these two concepts and modifying the objective function of the FCM algorithm, we are able to solve the problems of sensitivity to noisy data and the lack of spatial information, and improve the image segmentation results. The experimental results have shown that this robust clustering algorithm is useful for MRI brain image segmentation and it yields better segmentation results when compared to the conventional FCM approach. 相似文献
13.
随着工业生产和工艺的进步,人们对产品的质量要求越来越高。为提高光缆表面瑕疵分割的效果,克服模糊C均值聚类算法对噪声敏感的不足,提出了一种新的模糊C均值聚类(FCM)的瑕疵图像分割方法。该方法一方面考虑样本的邻域像素信息,使FCM的隶属度函数中包含像素的邻域信息,另一个方面使用一种新的距离度量方式代替传统的欧式距离。利用以上两种方法来增加算法的鲁棒性,此外,通过直方图法给聚类中心赋初值,使分割效果稳定。最后,分别对CCD相机获取的光缆图像添加椒盐噪声和高斯白噪声,使用改进的FCM算法和传统的FCM算法、FCMM算法进行光缆表面瑕疵分割实验。图像和分割正确率的对比实验结果表明,使用改进的FCM算法能更好地克服噪声,精确地将瑕疵从图像上提取出来,瑕疵轮廓更为清晰,提高了光缆表面瑕疵检测的效果。 相似文献
14.
改进的遗传模糊聚类算法对医学图像的分割 总被引:1,自引:0,他引:1
利用遗传算法全局随机搜索的特点,可以解决模糊C均值聚类(FCM)算法在医学图像分割中容易陷入局部最优解的问题,但确定遗传算法的初始搜索范围时,需要借助于人的经验。为此,用收敛速度快的硬聚类算法得到的聚类中心作为参考,上下浮动划出一个较小的数据范围,作为遗传算法的初始搜索空间。该方法在避免FCM算法陷入局部最优化的同时,也加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊算法,效果要好得多。 相似文献
15.
《Information Processing Letters》2014,114(6):287-293
The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms. 相似文献
16.
针对无线传感器网络(WSN)的节点能量有限、生命周期短、吞吐量低等问题,提出一种基于遗传算法(GA)和模糊C均值(FCM)聚类的WSN分簇路由算法GAFCMCR,采取"集中分簇,分布簇头选举"的方式。网络初始化时基站采用由GA优化的FCM聚类算法形成网络分簇。第一轮簇头由距簇中心最近的节点担任;从第二轮开始,簇头的选举由上一轮的簇头负责,选举过程综合考虑候选节点的剩余能量、与基站的距离、与簇内其他节点的平均距离三个因子,并根据网络状态实时调整三个因子的权重。在数据传输阶段,将轮询机制引入簇内通信。仿真结果表明,相同网络环境下,与LEACH算法和基于K-Means的均匀分簇路由(KUCR)算法相比,GAFCMCR将网络生命周期延长了105%和20%。GAFCMCR成簇效果良好,具有良好的能量均衡性和更高的吞吐量。 相似文献
17.
18.
针对传统模糊C均值(FCM)聚类算法聚类数目难以确定,迭代速度慢,易陷入局部最优以及对聚类中心初始值的设置敏感等问题,提出一种融合全局最好和声搜索模糊C均值(GBHS-FCM)聚类算法。首先,利用全局最好和声搜索(GBHS)算法的全局性和鲁棒性的优点,得到初始聚类中心和聚类个数,再将其作为传统FCM聚类算法的初始聚类中心和聚类个数;其次,提出一种新颖的模糊聚类目标函数,将图像像素点邻域依赖特性考虑进来,与像素点灰度信息共同作用,增强了分割结果空间的连续性;此外,还采用了一种新颖的距离公式代替欧氏距离公式,增强了新算法对噪声的鲁棒性。仿真结果表明,新算法有效避免了传统FCM算法因初始聚类中心设置敏感而收敛到局部最优解,在聚类精度、速度和鲁棒性上均比传统FCM算法有所提高,针对具有不同特征的图像分割取得了较好的结果。 相似文献
19.
Image segmentation has been broadly applied in computer vision and image analysis. However, many segmentation methods suffer from limited accuracy for noisy images. To improve the robustness of the existing picture fuzzy clustering and solve the problem of selecting spatial constraint parameter, a novel picture fuzzy clustering is proposed. Firstly, a novel symmetric regularizing term is constructed to solve the time-consuming problem of existing picture fuzzy clustering, and the corresponding fuzzy clustering is proposed. Secondly, considering the correlation between current pixel and its neighboring pixels, the objective function is modified by adaptive weighting fusion of local mean information, and the maximum weight entropy constraint is embedded into it to solve the difficulty of parameter selection. Finally, the local spatial information constraint item of the current pixel is constructed by using its neighboring picture fuzzy partition information and is utilized to modify the picture fuzzy partition information of current pixel to correct the clustering center. Results show the proposed algorithm has some potential advantages in segmentation accuracy and anti-noise robustness. 相似文献