共查询到20条相似文献,搜索用时 93 毫秒
1.
提出了一种随机段模型系统的说话人自适应方法。根据随机段模型的模型特性,将最大似然线性回归方法引入到随机段模型系统中。在“863 test”测试集上进行的汉语连续语音识别实验显示,在不同的解码速度下,说话人自适应后汉字错误率均有明显的下降。实验结果表明,最大似然线性回归方法在随机段模型系统中同样能取得较好的效果。 相似文献
2.
为了提高文本无关的说话人识别系统的性能,提出了基于线性对数似然核函数的说话人识别系统。线性对数似然核函数利用高斯混合模型对频谱特征序列进行压缩;将频谱特征序列之间的相似程度转化为高斯混合模型参数之间的距离;根据距离表达式,利用极化恒等式求得频谱特征序列向高维矢量空间的映射方法;最后,在高维矢量空间,采用支持向量机(SVM)为目标说话人建立模型。在美国国家标准技术署公布的说话人识别数据库上的实验结果表明,所提核函数具有优异的识别性能。 相似文献
3.
4.
为了改善发声力度对说话人识别系统性能的影响,在训练语音存在少量耳语、高喊语音数据的前提下,提出了使用最大后验概率(MAP)和约束最大似然线性回归(CMLLR)相结合的方法来更新说话人模型、投影转换说话人特征。其中,MAP自适应方法用于对正常语音训练的说话人模型进行更新,而CMLLR特征空间投影方法则用来投影转换耳语、高喊测试语音的特征,从而改善训练语音与测试语音的失配问题。实验结果显示,采用MAP+CMLLR方法时,说话人识别系统等错误率(EER)明显降低,与基线系统、最大后验概率(MAP)自适应方法、最大似然线性回归(MLLR)模型投影方法和约束最大似然线性回归(CMLLR)特征空间投影方法相比,MAP+CMLLR方法的平均等错率分别降低了75.3%、3.5%、72%和70.9%。实验结果表明,所提出方法削弱了发声力度对说话人区分性的影响,使说话人识别系统对于发声力度变化更加鲁棒。 相似文献
5.
基于线性预测和最大似然的基音检测算法 总被引:3,自引:0,他引:3
根据语音信号产生机理,结合常用的线性预测和最大似然法,提出了一种有效的基音检测算法。该算法采用频域分块估计候选基音周期的范围,提高了算法的计算速度。仿真实验表明,该算法与传统方法相比其基音检测结果有了明显的改善,克服了随机错误及倍频、半频错误,在低信噪比下鲁棒性较好。 相似文献
6.
解决说话人识别问题具有重要的理论价值和深远的实用意义,本文在研究支持向量机理论的基础上,采用支持向量机的分类算法实现说话人识别系统的训练和测试,并将小波去噪技术应用于说话人识别的预处理过程中,改善进入说话人识别系统的语音质量。实验表明,在说话人识别系统中,支持向量机结合小波去噪可以获得较好的识别率。 相似文献
7.
针对预先给定参数求解共同向量所存在的不足,提出了一种基于共同向量的非常态语音说话人识别算法,首先,通过系统识别率自适应调整求解共同向量的参数;然后,将系统识别率最高的参数视为最优参数,为测试语音提取共同向量,并用SVM分类器进行非常态语音说话人分类。实验结果表明:该算法所提取的共同向量,对轻微感冒语音说话人识别率为85.4%,比对特征不进行处理的GMM算法、SVM和结合共同向量的GMM算法的识别率分别提高了16.9%、15.2%和3.2%。 相似文献
8.
语音识别中基于i-vector的说话人归一化研究 总被引:1,自引:0,他引:1
i-vector是反映说话人声学差异的一种重要特征,在目前的说话人识别和说话人验证中显示了有效性。将i-vector应用于语音识别中的说话人的声学特征归一化,对训练数据提取i-vector并利用LBG算法进行无监督聚类.然后对各类分别训练最大似然线性变换并使用说话人自适应训练来实现说话人的归一化。将变换后的特征用于训练和识别.实验表明该方法能够提高语音识别的性能。 相似文献
9.
针对现实中训练数据不足的特点,在说话人建模时采用高斯混合模型-通用背景模型(Gaussian Markov Model-Uniform Background Model, GMM-UBM),主要从说话人识别模型的自适应方法和参数估计方法两个方面,研究如何提高说话人识别系统的识别率。在说话人识别模型自适应方面,改进传统的用最大后验概率 MAP (Maximum A Posterior Probability)得到说话人模型的方法,将语音识别中的最大似然线性回归MLLR (Maximum Likelihood Linear Regression)和基于特征音(EigenVoice, EV)的自适应方法,应用到说话人识别模型自适应当中,并将其与MAP方法进行比较。 相似文献
10.
说话人识别是目前身份认证及人工智能领域研究的一个热点,解决说话人识别问题具有重要的理论价值和深远的实用意义.基于语音鲜明个性特征和显著的性别差异,提出了一种考虑性别差异的说话人识别方法,并采用SVM分类器进行训练和测试.先对SVM分类器分别进行性别识别训练和同性集合内个体识别的分类训练,建立起相应的支持向量集合,以此为基础,先后进行说话人的性别识别测试和个体识别测试.实验结果表明,该方法可以有效提高闭集说话人识别系统的性能. 相似文献
11.
本文在对语音识别中基于自适应回归树的极大似然线性变换(MLLR)模型自适应算法深刻分析的基础上,提出了一种基于目标驱动的多层MLLR自适应(TMLLR)算法。这种算法基于目标驱动的原则,引入反馈机制,根据目标函数似然概率的增加来动态决定MLLR变换的变换类,大大提高了系统的识别率。并且由于这种算法的特殊多层结构,减少了许多中间的冗余计算,算法在具有较高的自适应精度的同时还具有较快的自适应速度。在有监督自适应实验中,经过此算法自适应后的系统识别率比基于自适应回归树的MLLR算法自适应后系统的误识率降低了10% ,自适应速度也比基于自适应回归树的MLLR算法快近一倍。 相似文献
12.
为了更好地将区分式分类方法应用于说话者确认系统中,构建序列核支持向量机已成为说话人识别领域的研究热点与趋势.本文在研究可再生希尔伯特空间框架的基础之上构建出一个新的序列核来对语音序列间的相似性进行度量,并结合近年来提出针对支持向量机(SVM)跨信道子空间特征差异(ISV)所提出的归整技术(LFA,NAP,CSP),进一步优化序列核系统.在美国国家标准与技术研究所(NIST)2004年评测数据集的实验中,新序列核系统的识别率高于传统高斯混合模型(GMM)和基于广义线性区分性核(GLDS)的支持向量机. 相似文献
13.
支持向量机作为一种新的统计学习方法,在说话人识别中得到了广泛应用.本文针对支持向量机在说话人辨识中的大样本训练耗时问题,提出对语音参数进行模糊核聚类的约简方法,选择聚类边界的语音参数作为支持向量,可以在不影响识别率的情况下,减少支持向量机的训练量.并通过实验验证了该方法的有效性. 相似文献
14.
解决说话人识别问题具有重要的理论价值和深远的实用意义,本文在研究支持向量机理论的基础上,采用支持向量机的分类算法实现说话人识别系统的训练和测试,并将小波去噪技术应用于说话人识别的预处理过程中,改善进入说话人识别系统的语音质量。实验表明,在说话人识别系统中,支持向量机结合小波去噪可以获得较好的识别率。 相似文献
15.
该文提出了一种新的与文本无关的说话人识别算法。这种算法使用了能处理说话人交叉变量的语音信号频谱变化的模型。使用了两种不同音质的语音,即″纯净音质″和″电话音质″来测试这一算法,得到了很好的实验结果。 相似文献
16.
在说话人识别研究中,基于身份认证向量(Identity vector,IVEC)的说话人建模方法可以有效地提取说话人信息,是目前处于国际前沿的建模方法.本文对身份认证向量后接支持向量机(Identity vector followed by support vector machine,IVEC-SVM) 的说话人识别系统进行了研究,对比了该系统在十种不同核函数下的识别性能,并与文献中身份认证向量后接余弦距离打分(Identity vector followed by cosine distance scoring,IVEC-CDS)系统进行了比较. 在美国国家标准技术局(American National Institute of Standards and Technology,NIST)组织的2010年电话信道——电话信道说话人识别核心评测数据库上的实验结果显示,基于核函数的IVEC-SVM系统性能明显优于IVEC-CDS的系统性能.此外,实验结果表明基于Spline核的IVEC-SVM系统可取得最好的识别性能,与IVEC-CDS系统相比,其等错点(Equal error rate,EER)在分数归一化前后分别降低了10%和3%. 相似文献
17.
针对真实环境下的语种识别,信道类型和通话内容等非语种方面因素的不同都会造成测试和训练条件的不匹配, 从而影响系统的识别性能.本文以音素识别器后接向量空间模型(Phone recognizer followed by vector space model, PRVSM)为语种识别系统,引入联合自适应算法来解决系统中测试和训练条件的失配问题.研究了三种自适应方法用于系统的不同阶段: 1)基于受约束的最大似然线性回归(Constrained maximum likelihood linear regression, CMLLR)的声学模型自适应; 2)基于全局N元文法的音位特征向量自适应; 3) VSM模型中的支持向量机(Support vector machines, SVM)自适应.在综合采用多种自适应技术后, PRVSM系统的性能有了较大的提高,在NIST LRE 2009测试库上对于30s、10s和3s的测试段, 基于不同音素识别器的PRVSM系统的等错误率(Equal error rate, EER)分别相对降低了18%~23%、12%~20%以及5%~9%. 相似文献
18.
19.
支持向量机(SVM)是由Vapnik等人提出的一类新型机器学习方法,此方法利用较少的训练样本就可以达到比较理想的识别效果。本文应用SVM对手写数字字符集进行识别,结果表明了该方法在小字符集脱机手写体识别中的实用性。 相似文献