共查询到20条相似文献,搜索用时 22 毫秒
1.
用SFP-AQ法(亚硫酸钠和甲醛―蒽醌)预处理麦秸秆,研究预处理条件对酶解还原糖得率的影响。结果表明,较适宜的预处理和酶解条件分别为:蒸煮温度150℃,保温时间1 h,Na2SO3用量为12%,纤维素酶、木聚糖酶、β-纤维二糖酶三种复合酶用量为20 FPU/g,pH值4.8,酶解温度50℃,酶解时间48 h。此时,还原糖得率可达到46.4%。 相似文献
2.
以芒草秸杆为原料,通过三氟乙酸/超声波对其进行预处理,研究预处理前后芒草秸杆酶解效果。采用DNS法测定处理样品中还原糖含量;通过红外光谱及XRD分析考察预处理对芒草秸杆成分及纤维组织结构的影响。结果表明,三氟乙酸/超声波能有效破坏纤维素的晶形结构,增加纤维素酶与底物的酶解可及度,促进了芒草秸杆的酶解糖化。在40%三氟乙酸溶液、30℃、固液比为1∶30及超声波的辅助作用下预处理4h的芒草秸杆,当p H为4.6,加酶量22mg·g^-1,45℃酶解72h,其酶解糖化率可达64.6%。 相似文献
3.
目的:探讨甘油预处理对稻草粉酶解效果的影响。方法:采用正交实验法,以液固比、甘油质量分数、甘油预处理时间为因素,考查对还原糖浓度的影响。结果:甘油质量分数为70%,液固比为20∶1,甘油预处理时间为3d时,其对应的还原糖浓度为297.34μg/m L。结论:甘油预处理方法对稻草粉酶解效果有较为显著的影响。 相似文献
4.
促进玉米秸秆酶解效率的化学预处理方法比较 总被引:2,自引:0,他引:2
分别用八种化学方法对玉米秸秆进行预处理,将预处理后的试样用纤维素酶在最优条件下催化水解,初步比较了不同的化学方法在促进玉米秸秆酶解糖化方面的效果。通过比较各试样酶解后产糖量大小,得到最佳的预处理方案:采用0.176%(m/V)NaOH及0.9%(V/V)H2O2混合液在常温下按固液比1∶50振荡作用24 h,即在纤维素酶用量为50 FPU/g时,产糖量可从0.055 g/g提升到0.333 g/g,提高了83.51%;此时的木质素降解量亦为最大,达到了49.8%,此结果表明木质素的降解有利于纤维素酶敏感性的提高。 相似文献
5.
将芒草秸秆粉碎,分别采用1%H_2SO_4、1%NaOH、蒸汽爆破(SE)、1%Tween-80和SE+1%Tween-80等5种方法对芒草秸秆粉末进行预处理,然后加入纤维素复合酶进行酶解产糖,通过测定酶解上清液中六碳糖的含量来比较不同预处理方法对芒草酶解效率的影响。结果表明,采用SE+1%Tween-80预处理,芒草酶解效率最高,可达74.45%,较未处理提高了3.75~11.79倍;采用1%H_2SO_4、1%NaOH、SE或1%Tween-80预处理,芒草酶解效率较未处理分别提高了0.55~3.24倍、2.52~5.60倍、1.30~5.97倍和0~0.96倍,其中1%Tween-80预处理对芒草秸秆的酶解几乎没有任何促进作用。 相似文献
6.
<正>由于石油、煤炭等化石能源消耗的不断攀升,温室气体大量排出,环境污染问题日益严重,开发绿色环保和可持续发展的生物质能源,已经成为许多国家的能源安全战略。生物质乙醇是研究最早和最多的一类生物质能源。由于天然生物组抗性的限制,以木质纤维素类生物质为原料的二代生物质乙醇技术,很难直接对原料进行酶解糖化及生物转化,需要对原料进行预处理以达到提高酶解效率、提高乙醇产量、降低生产成本的目的。 相似文献
7.
采用氢氧化钠预处理甘蔗渣,通过单因素和正交试验考察了不同预处理条件对甘蔗渣酶解和发酵性能的影响,并进一步分析了比表面积和木质素含量对酶解性能的影响。结果表明:预处理温度、氢氧化钠质量分数及预处理时间对酶解和发酵效率影响较为显著,最佳的预处理条件为:温度85℃、时间11 h、NaOH质量分数4.5%,在此优化条件下预处理的甘蔗渣,含纤维素56.46%,与原料相比提高了46.16%;半纤维素20.30%、Klason木质素5.79%,与原料相比分别降低了15.77%和72.87%,酶解36 h的还原糖得率为0.69 g/g(以甘蔗渣质量计)。经过氢氧化钠预处理后的甘蔗渣比表面积显著增加(由原料的0.07 m2/g最大可增加到1.07 m2/g),木质素显著降低,有利于提高酶解和发酵效率。当比表面积超过0.30 m2/g时,酶解初始速率和酶解效率达到平衡;当木质素低于11%时,酶解效率达到平衡。 相似文献
8.
氨水浸泡稻草秸秆对纤维素酶解产糖的影响 总被引:1,自引:0,他引:1
为了有效提高木质纤维素酶解糖化率,以稻草秸秆为研究对象,采用氨水预处理实验,考察稻草秸秆粉粒度、氨水质量分数、预处理时间、预处理温度、液固比对稻草秸秆酶解糖化的影响。结果表明:稻草秸秆经60目过筛后用14%氨水按液固比9∶1在50℃处理35h,糖化率达61.42%。 相似文献
9.
研究了121℃下硫酸和氢氧化钠预处理对麻竹酶水解还原糖收率的影响,测定了不同预处理液质量分数和预处理时间对还原糖收率的影响,以及预处理后的预处理液中还原糖含量。结果表明,氢氧化钠预处理能显著提高还原糖收率,在氢氧化钠质量分数为2%,预处理时间60min时还原糖收率可达0.367g/gDS。硫酸预处理对还原糖收率的提高幅度不大。但硫酸预处理后的预处理液中还原糖含量较高,在硫酸预处理液质量分数为2%,预处理时间为90min时还原糖收率可达0.152g/gDS。两种预处理方法在121℃下的还原糖收率均高于100℃下的还原糖收率。 相似文献
10.
吐温-80及碱预处理对饲用稻草木质素含量和纤维素酶解产糖的影响 总被引:2,自引:0,他引:2
探讨了添加1‰吐温-80非离子表面活性剂和不同浓度碱预处理对稻草秸秆木质素及纤维素的影响,并对预处理前后的稻草进行了X射线衍射光谱(XRD)分析,从结晶度的变化综合分析了预处理对纤维素酶解的影响。实验结果表明:在30℃下添加1‰吐温-80非离子表面活性剂时,用4%NaOH预处理稻草秸秆,木质素含量降至6.5%(较未处理稻草下降了41.9%),灰分值仅占6.9%,具有较好的粗饲料价值;在121℃(0.1 MPa)下添加1‰吐温-80非离子表面活性剂时,用4%NaOH预处理稻草秸秆,木质素含量降至2.8%(较未处理稻草下降了74.5%),酶解还原糖达到393.9 mg/g,纤维素糖化率为59.3%(较未处理稻草提高了2.4倍)。XRD分析显示,在较温和的条件下,低浓度碱预处理稻草秸秆,对纤维素结晶区带来的影响相对于无定形区弱,不足以引起纤维素结晶度的降低。 相似文献
11.
氨预处理对大豆秸秆纤维素酶解产糖影响的研究 总被引:15,自引:0,他引:15
为了提高大豆秸秆酶解产糖能力, 以利于从大豆秸秆中提取生物降解性塑料的原料 ?? 乳酸, 对大豆秸秆纤维素预处理过程的影响因素进行了探索,对预处理前后大豆秸秆的物理结构变化、化学成分变化及预处理条件对大豆秸秆酶水解产糖的影响进行了研究。研究结果表明,粉碎结合氨处理对大豆秸秆酶水解影响较大,较适宜的预处理条件为大豆秸秆粉碎至 140 目,10%氨水处理 24h。经过预处理后大豆秸秆纤维素含量提高 70.27%, 半纤维素含量下降 41.45%, 木质素含量下降 30.16%, 有利于大豆秸秆酶解产糖。 相似文献
12.
采用加压热水对毛白杨进行预处理,利用扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱(FT-IR)等研究了预处理温度对毛白杨木材及其酶解材微结构的影响,并考察了预处理温度对还原糖得率的影响。结果表明:毛白杨木材经加压热水处理后结构松散,纤维形态和表面结构发生了改变;加压热水处理温度超过180 ℃以后,酶解前后物料的结晶度降低明显,酶解后的降幅最大可达74%。随着预处理温度的增加,木材酶解还原糖得率先增加后减小,其中预处理温度为200 ℃时还原糖得率最大可达38.3%。 相似文献
13.
研究了亚硫酸氢钠预处理对杨木浆料化学成分及酶水解效率的影响。增加预处理试剂亚硫酸氢钠用量可以脱除更多的木质素和半纤维素,随着试剂用量的增加葡聚糖、木聚糖和总糖的酶水解得率呈现先升高后降低,然后又升高的规律。当预处理试剂用量为4%时,木质素脱除率为28.7%,酶水解总糖转化率为55.2%;继续增加试剂用量至16%时,对酶水解糖的得率无明显促进作用,反而由于高聚糖降解较多导致得率下降;当试剂用量超过20%时,酶水解糖的得率又有所上升。亚硫酸氢钠用量为24%时,木质素脱除率为61.6%,总糖的转化率达到最大,在纤维素酶用量40FPU/g时,葡聚糖、木聚糖和总糖的转化率分别为59.7%、64.6%和66.2%。 相似文献
14.
15.
采用间歇式水热预处理装置,研究了水热预处理用于竹子的酶解规律,探讨了不同温度、处理时间、纤维素酶添加量及原料种类对促进竹子酶解的效果及其影响。结果表明水热预处理能显著提升竹子的酶解率,在优化条件190℃、10 min水热预处理,添加15 FPU·(g葡聚糖)-1纤维素酶,72 h葡聚糖与木聚糖酶解率分别为74.3%、54.0%,提高到原来的3.5倍和4.7倍。过高的预处理温度与过长的预处理时间都将导致木糖大量降解和部分葡萄糖降解,使单糖总量下降。纤维素酶的添加量从15 FPU·(g 葡聚糖)-1提高到60 FPU·(g 葡聚糖)-1,可使未作预处理和水热预处理竹子的总糖回收率分别提高21.5%和9.9%,其促进酶解的作用远低于预处理的效果,通过预处理增大酶的可及性是提高酶解率的关键。水热预处理对于生物质原料具有选择性,不同的竹子原料具有显著不同的效果。 相似文献
16.
预处理可以打破木质纤维素原料纤维素、半纤维素和木质素三大组分间的顽抗结构,从而提升纤维素基质可酶解性。本文针对目前常压甘油有机溶剂预处理花费时间过长的问题,尝试开展酸催化的常压甘油有机溶剂预处理研究以缩短预处理时间。实验通过单因素选择和响应面Box-Behnken设计优化,获得酸催化常压甘油有机溶剂预处理的最佳条件为:预处理温度245℃,预处理时间38min,硫酸添加质量0.1%。在此条件下获得基质48h酶解率的响应面预测值为94.0%,实际值为91.4%。结果表明响应面优化方案和回归模型适用于本实验,预处理显著提高了基质可酶解性。高浓度基质(15%~20%)酶解进一步证明了预处理后基质具有突出的可酶解性,20%浓度基质在酶载量5FPU/g干基质条件下批次酶解72h,酶解率达60%,葡萄糖浓度达83.4g/L。酸催化常压甘油有机溶剂酸预处理在明显缩短预处理时间的同时,能显著提高木质纤维素基质可酶解性,使后续工业化意义的浓醪酶解糖化成为可能。 相似文献
17.
木质纤维素乙醇的生产工艺中主要环节为预处理、酶解、发酵3个阶段.预处理是决定后续酶解效果的关键步骤,物理法、化学法和物理化学法预处理工艺是目前主要的研究方向,预处理效果需与经济可行性相互结合.对各预处理方式优缺点及经济可行性进行了综合性对比,较好的预处理方式为蒸汽爆破,糖回收率和经济可行性较高.后续采用诺维信公司不同酶... 相似文献
18.
近年来,低共熔溶剂(deep eutectic solvent,DES)以易制备、成本低、易回收等优势,在生物质预处理方面受到广泛关注。本研究以氯化胆碱为氢键受体,乙醇胺为氢键供体,合成DES,研究了不同温度、时间和固液比预处理条件对中药渣组分和酶解效果的影响。结果表明:固液比1∶20、120℃、预处理4h后原料中木质素去除率达到78.42%,纤维素回收率为83.89%。随后对不同条件下所得底物进行酶水解,反应96h后发现,较优条件下所得底物酶解效率为78.57%,较未处理中药渣(30.40%)提高了1.58倍。类分形动力学分析表明,预处理温度对酶解效果影响最大。SEM、XRD和FTIR检测发现,预处理后底物形貌、结晶指数和官能团变化有利于酶解效果的提高。 相似文献
19.
20.
木糖渣是玉米芯经稀酸处理提取木糖后的残余物,一般作为燃料焚烧以提供部分热能。由于其含有丰富的纤维素组分,故可通过生物转化来生产多种化工产品,但残渣中大量木素的存在严重抑制了纤维素酶的水解效率。采用一些有机溶剂预处理可将部分木素溶出,因而可改善物料的酶解性能。采用乙醇对木糖渣进行预处理,研究了预处理条件(如温度、时间、固液比等)对木糖渣化学组分和纤维素酶解转化率的影响,并与玉米秸秆和玉米芯等进行了对比。结果表明预处理降低了木糖渣的木素含量,在固液(质量/体积)比1︰8、处理液中乙醇浓度50%(体积)、预处理温度210℃、预处理时间60 min时,木素脱除率为53.26%,预处理后木糖渣在酶解72 h时的纤维素转化率达到84.42%,比预处理前提高 14.58%。研究还发现,与木糖渣相比,有机溶剂乙醇更适合用于玉米芯和玉米秸秆酶解前的预处理。 相似文献