共查询到20条相似文献,搜索用时 15 毫秒
1.
基于自抗扰控制器的交流位置伺服系统 总被引:4,自引:0,他引:4
提出一种新颖的基于自抗扰控制器(ADRC)的永磁同步电机(PMSM)位置伺服系统。外环由AD-RC实现位置环调节器,内环由PI调节器实现电流闭环,共同组成新颖的位置伺服系统控制器。ADRC由跟踪微分器(TD)、扩张状态观测器(ESO)和非线性状态误差反馈率(NLSEF)组成。TD通过为目标信号安排合适的过渡过程克服了系统响应中快速性和超调之间的矛盾;ESO精确观测系统的扰动并把扰动作用补偿到ADRC的输出中,提高系统的抗扰动能力;NLSEF实现非线性调节器以提高系统的控制精度。仿真和实验结果表明,该位置伺服系统具有高控制精度、快速响应无超调、强鲁棒性的特点。 相似文献
2.
针对摩擦非线性影响直流伺服系统控制性能的问题,提出了一种基于LuGre模型的变增益自抗扰控制(VGADRC)方法。建立了含LuGre模型的直流伺服系统微分方程模型。基于该模型设计摩擦补偿与自抗扰控制(ADRC)相结合的复合控制器。该控制器在不增大观测器增益的前提下,利用LuGre模型前馈补偿系统中的摩擦非线性,同时减小量测噪声对系统的影响。此外,为抑制传统线性扩张状态观测器(LESO)初始时刻引起的峰值问题,采用三阶变增益线性扩张状态观测器(VGLESO)对系统中的总扰动进行估计。最后仿真结果表明,采用所提控制方案能有效提高系统的低速跟踪性能和动态性能。 相似文献
3.
4.
为进一步提高永磁同步电机自抗扰控制器(ADRC)的调速控制性能,简化控制器参数整定的复杂程度,提出了一种复合ADRC控制策略。首先,速度环采用模糊参数整定的滑模自抗扰控制器,并分析了主要参数的整定方法。其次,设计了滑模转矩观测器,来估计实时的负载转矩。最后,设计电流环,采用有限集模型预测控制(FCS-MPC),对三相两电平电压源型逆变器的8种开关序列遍历寻优,并抑制转矩的脉动。仿真结果表明:该复合控制策略能有效提高永磁同步电机ADRC的控制性能,增强系统的抗扰动能力以及鲁棒性,控制性能优于传统的ADRC控制和PI控制。 相似文献
5.
基于负载观测的伺服系统抗扰研究 总被引:11,自引:5,他引:11
当负载变化时,按线性二次型状态反馈(LQSF)所设计的最优闭环控制系统是有静差的,为了减小和消除扰动静差,文中引入负载观测器实施对扰动负载的观测,并将其引入到电流调节器的输入端,作为速度调节器前馈补偿的控制输入,从而使系统具有优良的抗扰性能。文中给出了伺服系统负载观测的存在条件,负载观测器的构成方法,并在有或无负载观测结果参与控制的情况下,对实际系统做对比研究。系统的仿真和实验均证实了负载观测器参与系统控制的有效性。 相似文献
6.
7.
8.
为解决位置环采用常规二阶自抗扰控制(ADRC)的永磁同步电机伺服系统中速度不可控的问题,提出一种位置、速度控制器一体化设计方法。首先,分析了常规二阶ADRC位置控制的设计方法以及存在的问题;其次,借鉴滑模控制的一体化设计思想,综合设计系统的外环控制器,采用偏差反馈的算法对转速进行限幅,实现了四段式位置伺服控制,从而解决了常规二阶ADRC中速度不可控的问题。所提方法在最高转速进行限幅的基础上,能够实现电机的最速位置定位,而且对不同的位置给定和不同的转速限幅条件均适用。仿真和实验结果验证了其有效性与可行性。 相似文献
9.
针对在传统PI控制策略下永磁同步电机伺服系统中存在转速易超调和抗扰能力差等问题,提出一种基于非线性自抗扰控制的双闭环永磁同步电机速度控制策略。在速度环和电流环中将传统的PI控制器替换为非线性自抗扰控制器,分别设计转速环和电流环的非线性自抗扰控制器。在转速环中,利用跟踪-微分器解决响应快速性和超调之间的矛盾;引入二阶扩张状态观测器,对扰动进行估计并补偿;通过非线性状态误差反馈控制律,提高系统的控制精度。在电流环中,通过引入自抗扰控制中最核心的扩张状态观测器,减小未知扰动对系统的影响。仿真结果表明,系统具有响应快、无超调、抗扰能力强的特点,对负载、转速变化具有较强的鲁棒性,验证了该控制策略的有效性。 相似文献
10.
针对永磁同步电机伺服系统中存在的抗负载扰动能力差和转速超调等问题,提出一种基于非线性自抗扰控制的新型PMSM速度控制策略。通过分析伺服系统的扰动机理,在速度环将传统的PI控制器替换为非线性自抗扰控制器。通过跟踪-微分器将给定转速平滑化,克服了响应快速性和超调之间的矛盾,提升系统响应能力;通过引入二阶扩张状态观测器,对外部扰动进行估计并补偿,提高系统的抗干扰能力;通过非线性状态误差反馈控制律,利用“小误差大增益,大误差小增益”的非线性控制,提高系统的控制精度。仿真结果表明,系统具有响应快、无超调、抗负载扰动能力强的特点,对负载变化、转速变化具有较强的鲁棒性,验证了该策略的有效性。 相似文献
11.
为了提高系统对未知扰动和参数变化的鲁棒性,将自抗扰控制(ADRC)策略引入到永磁同步电机(PMSM)位置伺服系统中,并对ADRC策略进行改进,使系统满足高性能伺服控制要求。通过对ADRC中扩张状态观测器(ESO)结构的改进,提高观测器对扰动的观测速度。同时,针对ADRC中使用的转动惯量与实际惯量间存在误差,会影响速度ADRC控制器中控制增益的选取,采用在线惯量辨识方法,实时调节控制器参数。综合以上2点改进措施,分别设计转速环、位置环改进ADRC控制器,从根本上提高系统的动态性能和抗扰动能力。最后,通过仿真验证改进ADRC策略在PMSM位置伺服系统中的有效性。 相似文献
12.
13.
曾岳南曾祥彩蔡豪汪亮亮 《电气传动》2017,(4):3-6
将自抗扰控制器(ADRC)运用到永磁同步电机(PMSM)调速系统控制中。电流环采用一阶非线性自抗扰控制器(NLADRC)抵消电流环反电势的影响,减小电流跟踪误差和相电流总谐波畸变(THD);转速环采用一阶线性自抗扰控制器(LADRC)对负载转矩和黏滞摩擦进行补偿,提高系统转速稳定性;最后利用基于带宽的参数整定公式整定控制器参数。仿真和实验结果表明系统具有良好的转速稳定及抗负载扰动能力,验证了控制器设计的有效性。 相似文献
14.
15.
为使分布式永磁同步电机伺服系统能够在长控制周期、长延时的应用场景中获得良好的位置伺服效果,提出了一种改进的自抗扰控制算法(ADRC)。针对经典ADRC参数众多、物理意义不明确的问题,结合电机控制模型进行分析,得到了一套工程上可行的参数整定方法。同时,基于电机控制系统的特点,对经典ADRC中的扩张观测器进行改进,提高了观测收敛的效率。仿真和实验结果表明,相比传统方法,本文提出的改进的自抗扰控制器具有更强的鲁棒性、更好的动态性能。 相似文献
16.
基于自抗扰控制器的永磁同步电机位置伺服系统 总被引:8,自引:1,他引:8
设计了一种新颖的基于自抗扰控制器的永磁同步电动机位置伺服系统。该系统通过跟踪-微分器为给定位置信号提供一个过渡过程,克服了系统响应速度和超调之间的矛盾,使得系统响应快且没有超调;通过扩展状态观测器将系统的负载、转动惯量和定子电阻等参数变化带来的扰动观测出来并加以补偿,提高了系统的抗干扰能力;通过非线性状态误差反馈律实现了"小误差大增益,大误差小增益"的非线性控制,提高了控制精度。仿真结果表明,该系统具有响应快、无超调、稳态精度高的特点,对负载、转动惯量和定子电阻的变化具有很强的鲁棒性。 相似文献
17.
18.
基于永磁同步电机模型辨识与补偿的自抗扰控制器 总被引:10,自引:0,他引:10
在用1阶自抗扰(active disturbance rejection controller,ADRC)控制的永磁同步电机(permanent magnetic synchr- onous motor,PMSM)调速系统中,当扰动变化大时,扩张的状态观测器(extended state observer,ESO)难以保证对扰动的估计精度。为了使ESO对扰动有更好的估计,提高1阶自抗扰控制器的性能,提出了PMSM调速系统的模型补偿自抗扰控制器方案。辨识出系统的部分模型,利用部分模型信息在一阶自抗扰控制器对扰动进行部分补偿,从而减小了ESO对扰动估计的压力,使得扰动估计精度提高。仿真结果表明,该算法具有更好的抗负载扰动能力。 相似文献
19.
斩波串级调速系统的自抗扰控制 总被引:1,自引:0,他引:1
针对斩波串级调速系统中控制器的设计问题,提出用自抗扰控制器(ADRC)作为转速调节器,PI控制器为电流调节器,构成斩波串级调速的ADRC-PI双闭环控制系统.利用跟踪微分器安排合理的过渡过程以降低超调量.扩张状态观测器实时估计系统模型中的未知作用及内外扰动,并进行补偿成为积分串联型系统.控制律是误差和误差微分信号的非线性综合而避免了积分作用.通过斩波串级调速系统仿真试验,体现出该控制系统的设计不依赖于数学模型,且抗扰动能力强、响应快、超调量小,改善了系统的动态品质. 相似文献
20.
针对永磁同步电机(PMSM)的车辆驱动系统在负载变化过程中转速受到较大影响的问题,结合自抗扰控制器(ADRC),采用对负载扰动进行观测并补偿来抑制外部扰动的方法,设计了基于负载观测的二阶ADRC速度控制系统。对负载观测ADRC的控制方程进行了推导,并将负载观测控制量作为速度环的补偿控制输入。同时与未加入负载扰动的ADRC系统作对比研究。仿真与实验结果表明,带有负载观测的ADRC调速系统具有更强的抗扰动能力,提高了PMSM变频调速系统的动态稳定性能和响应能力,证明了带有负载观测的ADRC控制系统能够更好地满足电传动履带车辆的控制系统要求。 相似文献