首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
煤与蒸气干化污泥耦合掺烧是一种大规模处置污泥的技术手段,而蒸气干化污泥掺烧对机组能耗的影响规律尚不明确。对某350 MW燃煤机组开展蒸气干化污泥掺烧性能试验,研究蒸气干化污泥对锅炉效率、厂用电率、汽机热耗率、机组能耗率等的影响。试验期间,湿污泥处理量设定为8.00 t/h,利用污泥干化机将湿污泥含水率从80%分别干化至60%、40%。结果表明,蒸气干化污泥耦合发电时,机组能耗率上升,其中,锅炉效率下降主要是因为排烟热损失和固体未完全燃烧热损失增加,汽机热耗率上升是由于干化蒸气消耗,机组厂用电率上升主要是由于风机系统电耗和脱硫系统电耗上升。污泥干化程度越高,锅炉效率下降幅度越小,汽机热耗率上升幅度越大,机组厂用电率上升幅度越小。利用蒸气将污泥含水率从80%干化至40%,机组供电燃料耗率略有下降,机组供电燃料耗率变化量从2.039 g/kWh降至1.904 g/kWh。当机组掺烧湿污泥时,锅炉效率下降和厂用电率上升是造成机组能耗率上升的主要因素;当机组掺烧蒸气干化污泥时,汽机热耗率上升是导致机组能耗率上升的关键因素。本研究为蒸气干化污泥耦合发电机组能耗评估提供了理论和数据支撑。  相似文献   

2.
研究了不同压力、升温速率以及添加CaO催化剂对松木屑热解过程的影响并进行了动力学分析。研究结果表明:1)增加系统的反应压力会降低热解过程的最终失重率,最终的剩余物质增加,并且提高反应压力,不利于挥发分析出。但是通过动力学分析发现,一定范围内增加压力能够降低热解过程中的活化能,从而有利于热解反应的发生,但是压力超过0.7 MPa以后,活化能开始增加。2)增加升温速率,挥发分释放的越强烈,有利于热解反应的进行,但挥发分大量析出的温度范围并没有很明显的浮动。通过动力学分析发现,随着升温速率增加,反应的活化能出现减少趋势,这说明随着升温速率增加,松木屑热解反应更加激烈。3)在松木屑热解反应中添加CaO对反应过程有较大的影响。随着CaO催化剂添加量增加,松木屑最终失重率逐渐减少,从72.81 %减少到59.61 %,降幅达到18.13 %。DTG曲线显示失重峰增加到4个,另外两个为Ca(OH)2和CaCO3分解所引起的失重峰。随着CaO添加量的增加,第1个失重峰的峰值和第2个失重峰的峰值逐渐减小,最大峰值对应的温度点变化不明显;第3、第4个失重峰的峰值逐渐增加,最大峰值对应的温度出现明显增加趋势。  相似文献   

3.
利用TG-DTG热分析仪对神府粉煤热解特性进行实验研究,考察升温速率、煤样粒径和载气流速对神府粉煤热解过程的影响,并通过正交实验确定最大失重速率的最佳条件.热重实验结果表明:升温速率、煤样粒径和载气流速对热解失重均有影响.升温速率和载气流速增大,热解失重量减少.粒径对热解失重率的影响呈抛物线分布,最大热解失重量存在最佳粒径,本实验所研究的粒径小于0.84mm的神府煤,热解过程中最佳粒径为0.25mm~0.42mm.正交实验结果表明:升温速率是影响煤热解过程的主要因素,其次是粒径,载气流速对热解影响最小;当神府煤的煤样粒径为0.25mm~0.42mm、升温速率为30℃/min、载气流速为120mL/min时,热解失重速率最大,为4.95%/min.  相似文献   

4.
采用热重分析的方法对三种生物质(花生壳、木屑、核桃壳)和煤样在高纯N2气氛下,按照一定升温速率(20 K/min)分别进行单独热重实验及不同掺混比例生物质与煤样进行共热解实验。结果表明:生物质与煤进行共热解时,随着生物质添加量的增加,样品的失重速率增加,且热解的开始温度向低温区平移并大大缩短了热解所需的时间。  相似文献   

5.
研究了热解温度、气体流量、加热速率和保温时间三个操作因素对高粱秸秆热解产物(生物油和残炭)分布的影响。结果表明,对高粱秸秆热解产物的分布有很大影响的因素是热解温度和气体流速。在热解升温速率为10℃/min、热解温度为450℃,氮气流速为100mL/min、保温时间为1h的条件下,液体收率最高。  相似文献   

6.
采用热重分析仪,对不同混合比例的煤泥混样进行热解特性及动力学研究。根据各试样的热重曲线(TG)和微熵热重曲线(DTG),计算热解特征参数和动力学参数,重点分析了生活污泥的添加量对神木煤热解过程的影响。结果表明:煤与生活污泥的热解过程有很大差异,主要表现在挥发分初析温度、总失重率及最大失重速率。随着污泥添加量的增加,煤泥混样热解各阶段的最大失重速率、热解总失重率逐渐增加,而热解初析温度及热解活化能逐渐减小,表明污泥的添加对煤的热解具有促进作用。污泥质量分数为90%时,煤泥混样的热解特性最优,挥发分综合释放特性指数D和热解活化能分别是煤单独热解时的2. 86倍和75%。  相似文献   

7.
采用热重分析仪分别对废轮胎、煤及其混合样进行热解实验,研究废轮胎与煤的混合比例及热解升温速率对混合物失重特性的影响.结果表明:废轮胎和煤单独热解时发生剧烈缩聚反应,DTG曲线在400℃~480℃的温度区间有重叠部分;添加废轮胎对煤的热解有促进作用,随废轮胎质量分数的不断增加,煤的热解高峰区逐渐向低温区移动,且失重率不断提高;对混合样进行不同升温速率的热解实验发现,在较低的升温速率范围(15K/min~20K/min)内,增大升温速率可以促进热解反应的进行;而升温速率过高(20K/min)会使样品颗粒内部热解产生的挥发分来不及逸出而出现笼蔽效应,从而使样品的失重率减小.  相似文献   

8.
郭晓娟  张刚 《化工进展》2014,33(4):1030-1034
利用热重-红外分析仪(TG-FTIR)研究了手机SIM卡在不同升温速率下的热解行为,探讨了升温速率对热解参数及热解产物的影响。采用分布式活化能模型求解了热解活化能,探讨了活化能随转化率的变化规律。研究结果表明:手机SIM卡呈现一段热解,主要热解温区在350~500 ℃,最大失重速率为?62.57%/min,总失重率高达90%。随着升温速率的提高,热解初始温度和热解结束温度均增大,最大热解速率和对应的温度也都增大;热解活化能在170~204 kJ/mol变化,随转化率变化规律呈现先增大后减小再增大后逐渐减小的规律,在转化率0.2时达到最大值;主要热解产物为苯、烷烯烃等可燃成分,而且含有氯、氮等元素;升温速率对热解组分没有影响。  相似文献   

9.
《化学工程》2017,(1):5-10
为解决糠醛渣的堆放及资源的合理利用,以糠醛渣为研究对象,分别在同步热分析仪及管式炉上进行热解实验研究,主要考察热解终温、升温速率、碳酸钠含量对糠醛渣热解产物分布及热解炭性能的影响。同步热分析仪分别以10—40℃/min的升温速率升高到850℃(10℃/min添加碳酸钠);管式炉上以10℃/min的升温速率到达热解终温300—600℃。结果表明:热重分析确定热解失重过程为干燥段、挥发分逸出段、热解炭化段3个阶段,确定主要热解温度区间为300—600℃。添加碳酸钠后抑制水分的析出,失重变化率峰值变大,表明碱金属钠盐促进纤维素的分解。随着热解温度的升高热解碳的p H值逐渐增大,热解温度为400℃时达到最高的亚甲基蓝脱色率44.4%。热解炭可进一步用于活性炭染料吸附。  相似文献   

10.
研究了内蒙褐煤、热解半焦及煤-半焦混合物在微波场中的升温特性,并对比研究了300℃~750℃温度范围内,内蒙褐煤微波热解和常规热解的特性.研究表明,内蒙褐煤是一种弱微波吸收剂,需添加一定量的半焦作为微波吸收剂才能进行热解反应;在添加10%~30%半焦的范围内,随着半焦添加量的增加,煤-半焦混合物的热解升温速率逐渐增加,焦油和气体产率增加,半焦和热解水产率降低;在添加30%半焦,终温保温20min的条件下,与常规热解相比,微波热解油、半焦和热解水的产率降低,气体产率增加,其中CO和H2产率显著提高.  相似文献   

11.
为了优化木材热解工艺,以广西杉木为试验试材,在热解终点温度分别为450℃、600℃、750℃,平均升温速率分别为100℃/h、150℃/h和200℃/h的热解条件下,对杉木进行热解处理,计算产物得率。研究结果表明:随着热解温度的升高和升温速率的加快,杉木木炭产率呈下降趋势,而醋液的产率呈上升趋势,当炭化温度分别为450℃、600℃、750℃时,木炭的平均产率依次为36.03%,33.75%,28.99%,醋液的平均产率依次为31.90%,33.61%,35.17%。在生产中,为了提高醋液产率可以适当提高温度,反之可以增大木炭产率。  相似文献   

12.
通过TG/DTG热分析仪,对不同升温速率下神府粉煤热解特性进行实验研究,利用扫描电镜(SEM)对不同升温速率下的产物半焦进行外貌表征,将粉煤热解过程分为三段,分别建立一级动力学模型。结果表明,随着升温速率的增加,粉煤热解失重率降低,当升温速率由10℃/min升高到30℃/min时,热解失重率由37. 0%降低到23. 02%;产物半焦具有丰富的孔隙结构,升温速率越大,热解产物半焦的孔径越大,且排列趋于规则化;由一级动力学模型结果可得,活化能和频率因子之间存在补偿效应。  相似文献   

13.
通过TG/DTG热分析仪,对不同升温速率下神府粉煤热解特性进行实验研究,利用扫描电镜(SEM)对不同升温速率下的产物半焦进行外貌表征,将粉煤热解过程分为三段,分别建立一级动力学模型。结果表明,随着升温速率的增加,粉煤热解失重率降低,当升温速率由10℃/min升高到30℃/min时,热解失重率由37. 0%降低到23. 02%;产物半焦具有丰富的孔隙结构,升温速率越大,热解产物半焦的孔径越大,且排列趋于规则化;由一级动力学模型结果可得,活化能和频率因子之间存在补偿效应。  相似文献   

14.
选取晋南和宁东地区的两种高硫煤作为研究对象,用HCl-HF-CrCl_2对煤样进行脱矿物质处理。将脱矿物质煤与稻壳和木屑两种生物质分别按不同质量比进行混合,在不同温度下共热解,研究了混合半焦收率的实验值与计算值的差异,以及脱矿物质煤与生物质共热解对煤中有机硫逸出的促进作用,并对有机硫逸出率最大的样品进行了FTIR,XPS,BET表征,探讨了生物质促进煤热解过程中有机硫逸出的机理。结果表明:当升温速率为15℃/min,温度低于700℃时,脱矿物质煤与生物质共热解存在明显的协同效应,使得混合样热解的有机硫逸出率高于煤单独热解时的有机硫逸出率。FTIR分析表明脱矿物质晋南煤与生物质共热解过程中—■键消失,说明协同效应促进亚砜的分解;XPS分析表明最大有机硫逸出率下有机硫的种类及含量都减少,变化最明显的是脂肪族硫化物和砜类。  相似文献   

15.
以城市污泥为原料,通过尿素活化和两段式热解制备生物质活性炭。结果表明,污泥与尿素的固液比、第1段和第2段的热解温度对污泥活性炭比表面积有较大影响。当活化液中尿素质量分数为20%时,干污泥与尿素的质量比为1∶2,活化时间为24 h,在氮气保护控制第1段热解温度为550℃、停留时间2 h,第2段热解温度为650℃、停留时间1 h,经自然冷却并酸洗干燥后的活性炭样品的比表面积可达到325 m~2/g,高于未活化时相同工艺条件下所得到的炭样品(56 m~2/g)。通过对第1段和第2段热解产物的X-射线衍射和热重分析发现,尿素在活化阶段能迅速到达污泥表面并在1段热解时参与污泥碳化而形成类石墨结构的C3N4,在第2段升温时氮化碳分解为氨气和二氧化碳并从石墨晶区中释放,从而在污泥碳基表面形成孔穴。  相似文献   

16.
通过热重、元素和XRD分析,研究了新疆吉木萨尔县石长沟矿区油页岩在不同升温速率下的热解特性及热解机理. 结果表明,油页岩中有机质热解生成页岩油和热解煤气的反应主要集中在300~550℃;升温速率从3℃/min增至15℃/min,热解反应向高温区移动,有机质完全热解温度从530℃升至575℃. 油页岩有机质的热解动力学分析显示,升温速率从3℃/min增至15℃/min,直接Arrhenius法计算的有机质热解活化能从243.52 kJ/mol增至257.32 kJ/mol;反应转化率从0.02增至0.97,Friedman法计算的活化能从96.39 kJ/mol增至292.84 kJ/mol.  相似文献   

17.
小麦与玉米秸秆的热解过程及其动力学分析   总被引:1,自引:0,他引:1  
采用热分析仪,通过研究在氮气气氛下,升温速率分别为20、40、60和80℃/min时小麦和玉米秸秆的热解过程得出:小麦和玉米秸秆的热解过程可以分为预热解、快速热解和慢速热解三个阶段;随着升温速率的升高,热解最大速率增加,其对应的温度向高温区移动,活化能和指前因子增大,动力学拟合直线的相关系数降低。  相似文献   

18.
干化+焚烧技术已逐渐成为我国大中城市中心城区污泥的重要处置手段,水热炭化预处理可提高污泥脱水性能,进而降低系统能耗,但对水热+干化污泥预处置过程的能耗分析还鲜有报道。研究了200~260℃下水热炭化预处理污泥的三相产物分布及水热液有机组分构成,在此基础上建立了水热+空气干化系统的能量-质量流模型,并分析了水热条件对系统能耗的影响,最后与空气干化系统、厌氧发酵+空气干化系统能耗进行对比。发现釜内压力为8 MPa,水热反应温度由200℃上升至240℃时,由于水热液中热值较高的有机组分芳香烃、含氮杂环比例明显下降,水热反应釜能耗由184kJ/kg(以原污泥计)降至161 kJ/kg,温度上升至260℃时,由于水蒸气气相分率明显增加及水热液中芳香烃含量回升,能耗上升至278 kJ/kg。受水蒸气气相分率影响,240℃下水热反应能耗随压力升高而降低,压力升至4 MPa后降低趋势迅速放缓。直接空气干化系统在干化空气温度为110℃时,系统总能耗为1 942 kJ/kg;厌氧消化+干化系统由于对沼气进行高效热回收利用,消化时间为10 d时,系统热耗低至212 kJ/kg,总能耗为984 kJ/kg;而...  相似文献   

19.
《化学工程》2015,(10):54-59
利用热重分析仪研究了温度、升温速率、粒径、催化剂类型对食用菌培养基废弃物热解行为的影响,并采用一级反应对其热解动力学进行了计算分析。由研究结果可知:随着升温速率的提高,热解起始温度、质量损失最大处的温度以及最大质量损失速率处的温度均有所提高,升温速率在10,20,30℃/min时,最大质量损失速率处的温度分别为333.0,344.5,352.8℃,对应的最大质量损失率分别为62.24%,64.19%,65.82%;随着粒径的不断增大,热解最大质量损失速率处的温度不断提高;催化剂对废菌棒的热解影响很大,质量损失速率峰明显地向低温区移动,对于没有混催化剂的废菌棒的质量损失率为65.82%,混有质量分数10%K2CO3后质量损失率为45.48%,而且加入K2CO3催化剂后,发现肩状峰消失了,只留下一个更宽的移向低温区的大峰,添加质量分数10%K2CO3催化剂活化能相比10%Ca O降低的幅度更大,说明K2CO3催化剂相比Ca O催化剂更有利于食用菌培养基废弃物的热解反应。  相似文献   

20.
采用污泥薄片模拟分散态污泥干化过程,研究了干化风速、温度对污泥干燥速率的影响,并分析了污泥干燥过程中的形貌变化,采用热红联用分析污泥在(35~700℃)干化过程中气体的释放情况.结果表明:污泥干燥过程中的自由水、空隙水和吸附水干燥速率不同,提高干燥温度和热风风速,污泥干燥速率增大;污泥体积的收缩主要由于自由水的蒸发,粘滞区的存在是由于自由水蒸发完毕而引起干燥速率发生突变;污泥升温过程中释放的气体主要有C02、H2O、NH3、VFA及庚烷,273.75~333.76℃的温度区间为失重速率最大区域;VFA在273.75℃释放量最大,庚烷在333.76℃释放量最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号