共查询到20条相似文献,搜索用时 15 毫秒
1.
传统的基于权限的Android恶意软件检测方法检测率较高,但存在较高的误报率,而基于函数调用的检测方法特征提取困难,难以应用到移动平台上。因此,在保留传统权限特征的基础上,提出了以权限和资源文件多特征组合方式的朴素贝叶斯检测方法,该方法所选特征提取简便,且具有较低的误报率,有效弥补传统检测方法的不足。实验从4 396个恶意样本和4 500个正常样本中随机抽取5组恶意样本和5组正常样本集,分别作了基于权限和基于多特征的对比实验。实验结果表明,与基于权限的分类方法相比,基于多特征的分类方法能显著地降低误报率,因此基于多特征的检测方法效果更优。 相似文献
2.
3.
针对传统Android恶意软件检测方法检测率低的问题,文中提出一种基于深度收缩降噪自编码网络(Deep Contractive Denoising Autoencoder Network,DCDAN)的Android恶意软件检测方法。首先,逆向分析APK文件获取文件中的权限、敏感API等7类信息,并将其作为特征属性;然后,将特征属性作为深度收缩降噪自编码网络的输入,使用贪婪算法自底向上逐层训练每个收缩降噪自编码网络(Contractive Denoising Autoencoder Network),将训练完成的深度收缩降噪自编码网络用于原始特征的信息抽取,以获取最优的低维表示;最后,使用反向传播算法对获取的低维表示进行训练和分类,实现对Android恶意软件的检测。对深度自编码网络的输入数据添加噪声,使得重构的数据具有更强的鲁棒性,同时加入雅克比矩阵作为惩罚项,增强了深度自编码网络的抗扰动能力。实验结果验证了该方法的可行性和高效性。与传统的检测方法相比,该检测方法有效地提高了对恶意软件检测的准确率并降低了误报率。 相似文献
4.
随着Android操作系统的广泛应用,基于Android平台的应用程序的数量日益增长。如何有效地识别恶意软件,对保护手机的安全性至关重要。提出了基于权限和API特征结合的Android恶意软件检测方法,该方法通过反编译apk文件来提取权限特征和API特征,并将两者相结合作为一个整体的特征集合。在此基础上,采用分类算法进行恶意软件的甄别。实验结果表明,该方法的判别准确率高于权限集合或API集合单独作为特征的判别方法,从而能更加有效地检测Android恶意应用程序。 相似文献
5.
由于智能手机使用率持续上升促使移动恶意软件在规模和复杂性方面发展更加迅速。作为免费和开源的系统,目前Android已经超越其他移动平台成为最流行的操作系统,使得针对Android平台的恶意软件数量也显著增加。针对Android平台应用软件安全问题,提出了一种基于多特征协作决策的Android恶意软件检测方法,该方法主要通过对Android 应用程序进行分析、提取特征属性以及根据机器学习模型和分类算法判断其是否为恶意软件。通过实验表明,使用该方法对Android应用软件数据集进行分类后,相比其他分类器或算法分类的结果,其各项评估指标均大幅提高。因此,提出的基于多特征协作决策的方式来对Android恶意软件进行检测的方法可以有效地用于对未知应用的恶意性进行检测,避免恶意应用对用户所造成的损害等。 相似文献
6.
Android由于其广泛的普及率使得其平台上的恶意软件数量不断增加,针对目前大部分方法采用单一特征和单一算法进行检验,准确率不高的不足,提出了一种基于多特征与Stacking算法的静态检测方法,该方法能够弥补这两方面的不足. 首先使用多种特征信息组成特征向量,并且使用Stacking集成学习算法组合Logistic,SVM,k近邻和CART决策树多个基本算法,再通过训练样本进行学习形成分类器. 实验结果表明,相对于使用单一特征和单一算法其识别准确率得到提高,可达94.05%,该分类器对测试样本拥有较好的识别性能. 相似文献
7.
针对Android恶意软件泛滥的局面,提出了一种基于行为的恶意软件动态检测的方法。首先,综合收集软件运行时的动态信息,包括软件运行时系统的信息和软件的内核调用信息,并将内核调用序列截断成定长短序列的形式。其次,将各方面信息统一为属性、属性值的形式。以信息增益作为指标,选用CA.5算法筛选出信息增益高、作用不重叠的属性,并依据信息增益的大小为各属性正比分配权重因子。最后,用K最近邻算法完成机器学习,识别出与样本类似的恶意软件,并将未知类型的软件标记为疑似恶意。实验结果表明,该方法识别率高、误报率低。通过增大学习样本库,识别的效果可以进一步提高。 相似文献
8.
Android系统是市场占有率最高的移动端操作系统,然而Android系统上的恶意应用种类和数量疯狂增长,对用户构成极大的威胁,因此对Android系统恶意软件检测方法的研究具有非常重要的意义.分析Android系统的安全机制,介绍Android恶意软件的分类,总结恶意软件的攻击技术,研究目前的检测方法,比较各类方法的... 相似文献
9.
代码图像化技术被提出后在Android恶意软件研究领域迅速普及。针对使用单个DEX文件转换而成的代码图像表征能力不足的问题,提出了一种基于代码图像合成的Android恶意软件家族分类方法。首先,将安装包中的DEX、XML与反编译生成的JAR文件进行灰度图像化处理,并使用Bilinear插值算法来放缩处理不同尺寸的灰度图像,然后将三张灰度图合成为一张三维RGB图像用于训练与分类。在分类模型上,将软阈值去噪模块与基于Split-Attention的ResNeSt相结合提出了STResNeSt。该模型具备较强的抗噪能力,更能关注代码图像的重要特征。针对训练过程中的数据长尾分布问题,在数据增强的基础上引入了类别平衡损失函数(CB Loss),从而为样本不平衡造成的过拟合现象提供了解决方案。在Drebin数据集上,合成代码图像的准确率领先DEX灰度图像2.93个百分点,STResNeSt与残差神经网络(ResNet)相比准确率提升了1.1个百分点,且数据增强结合CB Loss的方案将F1值最高提升了2.4个百分点。实验结果表明,所提方法的平均分类准确率达到了98.97%,能有效分类Android恶意软件家族。 相似文献
10.
Android应用普遍具有比所属类型更多的功能,需要获取更多的权限,过多的权限可能带来一定的安全隐患。针对这类问题,提出一种基于元信息的Android恶意软件检测方法。首先,通过对Android应用程序描述进行LDA主题提取,实现数据降维,使用K-means聚类算法按照功能类型对应用程序分组;然后,对属于同一功能类型的所有应用程序提取其权限信息,以权限特征为研究对象,使用KNN算法进行Android恶意软件的分类检测。实验结果获得94.81%的平均准确率,证明了方法的有效性和高准确率。 相似文献
11.
Android恶意软件特征研究 总被引:2,自引:0,他引:2
智能手机的广泛应用导致手机恶意软件的数量急速增加,尤其是近几年,基于Android操作系统的手机在智能手机市场占据主导地位,针对Android系统的恶意软件数量快速增加。手机恶意软件主要收集手机用户地理位置、语音通信、短信等个人隐私信息,或进行恶意扣费、耗费系统资源等行为,给用户自身和手机系统带来很大危害。准确分析恶意软件行为特征可以为后续清除恶意软件提供有力依据。传统的恶意软件分析技术主要包括静态分析与动态分析,文中介绍了当前存在的一些手机恶意软件分析检测技术及其缺陷,并从安装、激活、恶意负载三方面对已知Android恶意软件主要行为特征进行详细分析。 相似文献
12.
13.
融合多特征的Android恶意软件检测方法 总被引:1,自引:0,他引:1
针对当前基于机器学习的Android恶意软件检测方法特征构建维度单一,难以全方位表征Android恶意软件行为特点的问题,文章提出一种融合软件行为特征、Android Manifest.xml文件结构特征和Android恶意软件分析经验特征的恶意软件检测方法。该方法提取Android应用的Dalvik操作码N-gram语义信息、系统敏感API、系统Intent、系统Category、敏感权限和相关经验特征,多方位表征Android恶意软件的行为并构建特征向量,采用基于XGBoost的集成学习算法构建分类模型,实现对恶意软件的准确分类。在公开数据集DREBIN和AMD上进行实验,实验结果表明,该方法能够达到高于97%的检测准确率,有效提升了Android恶意软件的检测效果。 相似文献
14.
15.
机器学习为恶意软件检测提供了一种新的视角,它可以从大量的样本中自动学习和提取特征,然后使用这些特征进行预测。通过对Android系统的权限、API调用以及动态行为等方面进行深入的分析,研究人员已经成功地发现了许多与恶意软件相关的显著特征。对Android恶意软件的特征进行了深入的分析,探讨几种主流的机器学习算法,并对它们的性能进行了对比。研究结果表明,该算法在检测Android恶意软件时可以提高实时性和准确性,从而提高了检测的精确性和效率。 相似文献
16.
Android移动平台中恶意软件变种数量与日俱增,为了能够高效快速地检测出变种样本,提出一种能够根据Apk中字符串以及函数长度分布特征,来生成模糊哈希值的方法,使得同类变种的恶意软件间的哈希值相似。在对变种恶意软件进行检测时,首先利用k-means方法对已知病毒库所产生的模糊哈希值进行聚类,从而简化病毒库。再利用哈密顿距离来计算其与病毒库中各模糊哈希间哈密顿距离。当距离小于阈值,则表示检测到变种。实验结果表明,提出的方法具有检测速度快,抗干扰能力强等特点。 相似文献
17.
基于机器学习的Android平台恶意软件检测方法提取的权限信息特征维度高且类别区分能力弱,导致检测精度低及复杂度高。为此,提出一种基于特征占比差与加权随机森林的恶意软件检测方法。通过获取Android软件的权限信息和硬件组件信息,分析各类特征的占比差,并将特征属性作为分类模型的输入。在此基础上,对随机森林中的树模型赋予不同的权值,验证树模型对最终分类结果的影响。实验结果表明,与神经网络方法相比,基于特征占比差的特征构建方法所提取的特征具有较好的类别区分能力,且改进后的随机森林能提高恶意软件检测的准确性。 相似文献
18.
基于Android系统恶意软件检测的全流程,对比和分析了国内外的研究现状和进展,从样本获取的角度介绍了标准化数据样本的来源及作用,从特征选择的角度阐述了特征选择应遵循的原则;重点从检测方法的角度对比和分析了各种检测方法的优缺点,同时总结和归纳了特征数据集筛选方法以及实验结果评估方法。最后结合实际应用和需求,展望了未来Android恶意软件检测方法的研究和发展方向。 相似文献
19.
随着互联网尤其是智能手机的不断发展,智能手机的安全问题也不容忽视.许多智能手机都会进行ROOT或者越狱,这样虽然方便了用户却增加了手机安装第三方不被信任软件的风险,也为病毒和恶意软件提供了可乘之机,Android系统由于其开源性,很容易遭受第三方的攻击.本文以J48决策树分类算法构建模型,并用模型对未知软件进行预测,从而判断未知数据是恶意软件还是良性软件. 相似文献
20.
《计算机应用与软件》2019,(9)
随着Android版本的不断更替,以及恶意软件的代码混淆技术的发展,主流的静态检测方法开始面临检测效率逐年下降的问题。针对上述问题,提出一种基于抽象API调用序列的Android恶意软件检测方法。该方法采用API包名、混淆名和自定义名来抽象API调用序列,使得抽象出来的序列不依赖API版本,同时又包含混淆代码特征,具有更好的容错性。在此基础上,计算抽象API调用序列之间的转移概率矩阵作为分类特征,采用RandomForest分类算法进行恶意软件检测。实验结果表明,该方法对API版本依赖性小,且判别准确率高于一般使用API调用序列作为特征的判别方法,从而能更有效地检测未知应用软件的恶意性。 相似文献