首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sonnabend G  Wirtz D  Schieder R 《Applied optics》2005,44(33):7170-7172
We report experiments evaluating the feasibility of quantum-cascade lasers (QCLs) at mid-infrared wavelengths for use as local oscillators (LOs) in a heterodyne receiver. Performance tests with continuous-wave (cw) lasers around 9.6 and 9.2 microm were carried out investigating optical output power, laser linewidth, and tunability. A direct comparison with a CO2 gas laser LO is presented as well. The achieved system sensitivity in a heterodyne spectrometer of only a factor of 2 above the quantum limit together with the measured linewidth of less than 1.5 MHz shows that QCLs are suitable laser sources for heterodyne spectroscopy with sufficient output power to replace gas lasers as LOs even in high-sensitivity astronomical heterodyne receivers. In addition, our experiments show that the tunability of the lasers can be greatly enhanced by use of an external cavity.  相似文献   

2.
A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.  相似文献   

3.
Tian Z  Wang Q  Wang C 《Applied optics》2001,40(18):3033-3037
We present the results of our theoretical and experimental investigation of the pulsed heterodyne of an electro-optically Q-switched radio-frequency-excited CO(2) waveguide laser with two channels. We used a six-temperature model for CO(2) lasers to describe the process of dynamic emission in an electro-optically Q-switched laser. The calculated pulse waveforms are in good agreement with the experiment, which we used as the basis for our theoretical study of a pulsed laser heterodyne and its Fourier transform frequency spectrum. The experimental results are consistent with the theoretical analyses.  相似文献   

4.
蔡式东  邱吉衡 《计量学报》1993,14(4):256-259
介绍了一种利用激光外差测量转动物体偏心距的动态测量方法。以CO_2激光器为本振光,转动圆盘模拟转动物体,对其在不同转速下的偏心距进行精密测量,给出测量应满足的条件和测量结果。  相似文献   

5.
准确的碳排放计量是实现“碳峰化、碳中和”目标的重要一步。在所有碳排放源中,固定排放源排放的CO2是温室效应的主要因素。因此,精确测量固定排放源CO2的浓度尤为重要。基于近红外分子吸收光谱原理并结合多次反射直接吸收光谱技术,利用35% CO2/N;2混合物,建立了精确测量CO2浓度的方法,测量了293K和0,4.1,8.1,13.3kPa下,CO2在6359.97cm-1的(30012)←(00001)R16e和6361.25cm-1的(30012)←(00001)R18e跃迁谱线,计算了R18e的谱线强度,通过比较35% CO2/N2混合物和其它CO2/N;2混合物的吸收面积,可以得到15%,10%,5%的CO2/N;2混合物的浓度。结果表明所建立的理论方法和实验结果能够较好地表征待测气体的浓度,测量不确定度与基于天平的称重法相当。  相似文献   

6.
Yoshikado S  Aruga T 《Applied optics》2000,39(9):1421-1425
A trial one-dimensional (1-D) synthetic aperture infrared laser radar (SAILR) system for imaging static objects, with two CO(2) lasers as a transmitter and a local oscillator for heterodyne detection, was constructed. It has a single receiving aperture mounted on a linearly movable stage with a length of 1 m and a position accuracy of 1 mum. In an indoor short-range experiment to confirm the fundamental functions of the system and demonstrate its unique imaging process we succeeded in obtaining 1-D synthetic aperture images of close specular point targets with theoretically expected resolution.  相似文献   

7.
Taczak TM  Killinger DK 《Applied optics》1998,37(36):8460-8476
A smoothly tunable, narrow-linewidth, cw, 32-mW, 2.066-mum Ho:YLF laser was constructed and used for the first time in preliminary spectroscopic measurements of atmospheric CO(2) and H(2)O. The laser was constructed with a 4.5-mm-long, TE-cooled, codoped 5% Tm and 0.5% Ho yttrium lithium fluoride crystal (cut at Brewster's angle) pumped by an Ar(+)-pumped 500-mW Ti:sapphire laser operating at 792 nm. Intracavity etalons were used to reduce the laser linewidth to approximately 0.025 cm(-1) (0.75 GHz), and the laser wavelength was continuously and smoothly tunable over approximately 6 cm(-1) (180 GHz). The Ho:YLF laser was used to perform spectroscopic measurements on molecular CO(2) in a laboratory absorption cell and to measure the concentration of CO(2) and water vapor in the atmosphere with an initial accuracy of approximately 5-10%. The measurement uncertainty was found to be due to several noise sources, including the effect of asymmetric intensity of the laser modes within the laser linewidth, fluctuations caused by atmospheric turbulence and laser beam/target movement, and background spectral shifts.  相似文献   

8.
Gibert F  Flamant PH  Bruneau D  Loth C 《Applied optics》2006,45(18):4448-4458
A 2 microm heterodyne differential absorption lidar (HDIAL) has been operated at the Inst?tut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique (Paris) to monitor the CO(2) mixing ratio in absolute value at high accuracy in the atmospheric boundary layer. Horizontal measurements at increasing range are made to retrieve the optical depth. The experimental setup takes advantage of a heterodyne lidar developed for wind velocity measurements. A control unit based on a photoacoustic cell filled with CO(2) is tested to correct afterward for ON-line frequency drift. The HDIAL results are validated using in situ routine measurements. The Doppler capability is used to follow the change in wind direction in the Paris suburbs.  相似文献   

9.
Weidmann D  Reburn WJ  Smith KM 《Applied optics》2007,46(29):7162-7171
Following the recent development of a ground-based prototype quantum cascade laser heterodyne radiometer operating in the midinfrared, atmospheric ozone profile retrievals from a solar occultation measurement campaign performed at the Rutherford Appleton Laboratory on 21 September 2006 are presented. Retrieval is based on the optimal estimation method. High resolution (0.0073 cm(-1)) atmospheric spectra recorded by the laser heterodyne radiometer and covering a microwindow (1033.8-1034.5 cm(-1)) optimized for atmospheric ozone measurements were used as measurement vectors. As part of the evaluation of this novel instrument, a comprehensive analysis of the retrievals is presented, demonstrating the high potential of quantum cascade laser heterodyne radiometry for atmospheric sounding. Vertical resolutions of 2 km near the ground and about 3 km in the stratosphere were obtained. The information content of the retrieval was found to be up to 48 bits, which is much higher than any other passive ground-based instrument. Frequency mismatches of several absorption peaks between the forward model and experimental spectra have been observed and significantly contribute to the retrieval noise error in the upper-troposphere lower-stratosphere region. Retrieved ozone vertical profiles were compared to ozonesonde data recorded at similar latitudes. The agreement is generally excellent except for the 20 to 25 km peak in ozone concentration, where ozonesonde data were found to be 20% lower than the amount retrieved from the laser heterodyne radiometer spectra. Quantum cascade laser based heterodyne radiometry in the midinfrared has been demonstrated to provide high spectral resolution and unprecedented vertical resolution for a passive sounder in a highly compact and mechanically simple package.  相似文献   

10.
单光子探测技术和激光外差探测技术是探测微弱光信号的重要手段,通过微弱光信号提取目标多维信息是目前激光感知的重要领域。但是在实际应用中背景噪声以及信号光的退相干,会严重影响单光子探测技术以及外差探测技术对于目标多维信息的感知。在探测微弱光信号时的这些问题通过传统方案很难被有效的解决。量子外差精密测量方法是在单光子探测的基础上结合外差探测的一种新测量方法,可以解决单光子探测探测灵敏度受背景噪声限制的缺点。并且量子外差对本振光强度要求极低,可以有效降低大阵列外差探测对于本振强度的要求。文中进一步总结并分析了量子外差精密测量方法的研究动态。通过现有研究成果的梳理和分析有助于深入理解和把握目前量子外差精密测量方法的研究现状和问题,为量子外差精密测量方法未来发展奠定基础。  相似文献   

11.
高加速度超精密激光外差干涉测量模型   总被引:3,自引:1,他引:2  
为了精确地描述激光外差干涉在高加速度超精密测量中加速度对位移测量精度的影响机理与规律,建立了高加速度超精密激光外差干涉位移测量模型.通过分析测量棱镜三维运动对多普勒频移的影响,推导出高加速度激光外差干涉位移测量模型.理论分析和仿真实验表明,当测量加速度为9m/s2,匀加速运行的位移为500mm时,由于加速度变化引起的相对论性效应对测量精度的影响为5nm.高加速度超精密激光外差干涉位移测量模型的建立,可提高激光外差干涉在高加速度超精密测量中的测量精度,为激光外差干涉在高速和超高速测量领域的应用提供了理论依据.  相似文献   

12.
Chou C  Han CY  Kuo WC  Huang YC  Feng CM  Shyu JC 《Applied optics》1998,37(16):3553-3557
An amplitude-sensitive optical heterodyne polarimeter was set up to monitor noninvasively the aqueous glucose concentration in a rabbit's eye. A Zeeman laser in conjunction with a Glan-Thompson analyzer was used to generate an optical heterodyne signal. The amplitude of the heterodyne signal linearly related to the optical rotation angle of the aqueous glucose. The concentration of the aqueous glucose in a rabbit's eyeball was measured in vivo. There was a 30-min time delay between observations of aqueous glucose and blood glucose. The detection capability and the reproducibility of the experiment are demonstrated and discussed.  相似文献   

13.
光学倍频影响激光外差干涉测量精度的机理   总被引:2,自引:1,他引:1  
钟志  谭久彬  陈洪芳 《光电工程》2005,32(7):27-29,37
为了同时提高激光外差干涉测量的分辨力和精度,必须深入分析光学倍频对激光外差干涉测量精度的影响机理。在此基础上,建立了光学倍频相位测量模型,从理论上证明,光学倍频能够实现对激光外差干涉信号的细分,提高测量分辨力。光学倍频改变非线性误差的相位而使非线性误差减小,但同时改变了激光干涉多普勒频移的v/c平方项,使得残余累计误差增大。仿真结果表明,光学N倍频使非线性误差减小到原来的1/N,但使残余累计误差增大N2倍。因此,光学倍频仅适用于低速测量的场合。  相似文献   

14.
To our knowledge we present the first experiments with a fully reflective external-cavity quantum-cascade laser system at mid-infrared wavelengths for use as a local oscillator in a heterodyne receiver. The performance of the presented setup was investigated using absorption spectroscopy as well as heterodyne techniques. Tunability over approximately 30 cm(-1) at 1130 cm(-1) was demonstrated using a grating spectrometer. A continuous tuning range of 0.28 cm(-1) was verified by observing the spectra of an internally coupled confocal Fabry-Pérot interferometer and the absorption lines of gas phase SO(2). In a second step the output from the system was used as a local oscillator signal for a heterodyne setup. We show that spectral stability and side mode suppression are excellent and that a compact external-cavity quantum-cascade laser system is well suited to be used as a local oscillator in infrared heterodyne spectrometers.  相似文献   

15.
Chen KH  Hsu CC  Su DC 《Applied optics》2003,42(28):5774-5776
With a specially designed probe, the phase difference between s andp polarization of light reflected under surface-plasmon resonance is measured by use of a common-path heterodyne interferometer. For specific ratios of phase difference to glucose concentration, the glucose concentration can be estimated as a function of the measured phase data. A prototype was set up to demonstrate the feasibility of this sensor, which was experimentally tested in the range 40-500 mg/dl with a small quantity of solution and had a measurement resolution of 1.41 mg/dl at 25 degrees C.  相似文献   

16.
Cai T  Gao G  Chen W  Liu G  Gao X 《Applied spectroscopy》2011,65(1):108-112
A sensor using a single distributed-feedback (DFB) diode laser at 1.57 μm for the simultaneous measurement of CO(2) and CO concentration at elevated temperatures is developed. A proper line pair near 6361.250 and 6361.344 cm(-1) is chosen based on absorption strength, separation of the two lines, and isolation from interference of neighboring transitions of the major combustion gases. The concentrations of CO(2) and CO are inferred from their wavelength modulation spectroscopy (WMS) 1?-normalized absorption-based WMS-2? signal peak heights. The CO(2) and CO concentration measurements are within 3.3% and 5% of the expected values over the full temperature range.  相似文献   

17.
A method for the direct determination of carbon dioxide in aqueous solutions using a room-temperature mid-infrared (MIR) quantum cascade laser at 2330 cm(-1) is reported. The absorption values of different carbon dioxide concentrations were measured in a 119 microm CaF2 flow-through cell. An optical system made of parabolic mirrors was used to probe the flow cell and to focus the laser beam on the mercury cadmium telluride (MCT) detector. Aqueous carbon dioxide standards were prepared by feeding different mixtures of gaseous N2 and CO2 through wash bottles at controlled temperature. The concentration of the dissolved CO2 was calculated according to Henry's law, taking into account the temperature and the partial pressure of CO2. The carbon dioxide standards were connected via a selection valve to a peristaltic pump for subsequent, automated measurement in the flow-through cell. A calibration curve was obtained in the range of 0.338 to 1.350 g/L CO2 with a standard deviation of the method sxo equal to 19.4 mg/L CO2. The limit of detection was calculated as three times the baseline noise over time and was determined to be 39 mg/L.  相似文献   

18.
We present a model for quantitative measurements in binary mixtures of nitrogen and carbon monoxide by the use of dual-broadband rotational coherent anti-Stokes Raman spectroscopy. The model has been compared with experimental rotational coherent anti-Stokes Raman scattering spectra recorded within the temperature range of 294-702 K. Temperatures and concentrations were evaluated by spectral fits using libraries of theoretically calculated spectra. The relative error of the temperature measurements was 1-2%, and the absolute error of the CO concentration measurements was <0.5% for temperatures < or =600 K. For higher temperatures, the gas composition was not chemically stable, and we observed a conversion of CO to CO2. The influence of important spectroscopic parameters such as the anisotropic polarizability and Raman line-broadening coefficients are discussed in terms of concentration measurements. In particular, it is shown that the CO concentration measurement was more accurate if N2-CO and CO-N2 line-broadening coefficients were included in the calculation. The applicability of the model for quantitative flame measurements is demonstrated by measuring CO concentrations in ethylene/air flames.  相似文献   

19.
Jeng YT  Lo YL 《Applied optics》2006,45(6):1134-1141
A new heterodyne polariscope for sequential measurements of the complete optical parameters of linearly birefringent materials is proposed. A multiple-order crystalline quartz quarter-wave plate used as a sample was tested in two sequential setups. In the first setup we used an electro-optic modulator to modulate the circular heterodyne polariscope and then applied a phase-locking technique to measure the principal axis angle precisely. In the second setup, removing the first quarter-wave plate, resulted in a linear heterodyne polariscope, and again we used the phase-locking technique to extract the apparent retardance. Furthermore, by tilting the sample and placing a material of known thickness into the second setup, we determined the order, thickness, and refractive indices (ne and no) of a multiple-order wave plate by using the new algorithm. The proposed method has average absolute errors of 0.2167 degrees and 0.15% with respect to the principal axis angle and the apparent retardance, respectively. The order, thickness, and refractive indices are also in good agreement with the known sample data. In contrast to the conventional measurement schemes that could not measure more than two parameters, the proposed heterodyne polariscope uniquely measures six parameters.  相似文献   

20.
Koch C 《Applied optics》1999,38(13):2812-2819
A fiber-optic measurement system is described that allows ultrasound to be detected in fluids. It is based on a heterodyne interferometer, and the sensing element consists of a metal-coated fiber tip. The heterodyne technique permits direct acquisition of the sound pressure. The required ac photodetection is carried out with wide bandwidth, and the system provides high temporal and spatial resolution. For optimum performance the system parameters are matched to the sound-wave properties of the current application with the aid of theoretical and numerical calculations. The fiber-optic sensor system was applied to two problems of ultrasonic exposimetry in which the favorable features of the measurement technique were exploited. Shock waves from an electromagnetic lithotripter were investigated by use of the wide bandwidth of the system, and the subharmonic in an ultrasonic cleaner was detected, which indicates cavitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号