首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytochrome family of photoreceptors has dual molecular functions: photosensory, involving light signal perception, and regulatory, involving signal transfer to downstream transduction components. To define residues necessary specifically for the regulatory activity of phytochrome A (phyA), we undertook a genetic screen to identify Arabidopsis mutants producing wild-type levels of biologically defective but photochemically active and dimeric phyA molecules. Of eight such mutants identified, six contain missense mutations (including three in the same residue, glycine 727) clustered within a restricted segment in the C-terminal domain of the polypeptide. Quantitative photobiological analysis revealed retention of varying degrees of partial activity among the different alleles--a result consistent with the extent of conservation at the position mutated. Together with additional data, these results indicate that the photoreceptor subdomain identified here is critical to the regulatory activity of both phyA and phyB.  相似文献   

2.
Blue light responses in higher plants can be mediated not only by specific blue light receptors, but also by the red/far-red photoreversible phytochrome system. The question of interdependence between these photoreceptors has been debated over many years. The availability of Arabidopsis mutants for the blue light receptor CRY1 and for the two major phytochromes phyA and phyB allows a reinvestigation of this question. The analysis of photocontrol of seed germination, inhibition of hypocotyl growth and anthocyanin accumulation clearly demonstrates that (i) phyA shows a strong control in blue light responses especially at low fluence rates; (ii) phyB mediated induction reactions can be reversed by subsequent blue light irradiations; and (iii) CRY1 mediates blue light controlled inhibition of hypocotyl growth only at fluence rates higher than 5 mumol m-2s-1 and independently of phytochrome A and B.  相似文献   

3.
The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of beta-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h-1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h-1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.  相似文献   

4.
Phytochrome A (phyA) and phytochrome B photoreceptors have distinct roles in the regulation of plant growth and development. Studies using specific photomorphogenic mutants and transgenic plants overexpressing phytochrome have supported an evolving picture in which phyA and phytochrome B are responsive to continuous far-red and red light, respectively. Photomorphogenic mutants of Arabidopsis thaliana that had been selected for their inability to respond to continuous irradiance conditions were tested for their ability to carry out red-light-induced enhancement of phototropism, which is an inductive phytochrome response. We conclude that phyA is the primary photoreceptor regulating this response and provide evidence suggesting that a common regulatory domain in the phyA polypeptide functions for both high-irradiance and inductive phytochrome responses.  相似文献   

5.
Plants have at least two major photosensory receptors: phytochrome (absorbing primarily red/far-red light) and cryptochrome (absorbing blue/UV-A light); considerable physiological and genetic evidence suggests some form of communication or functional dependence between the receptors. Here, we demonstrate in vitro, using purified recombinant photoreceptors, that Arabidopsis CRY1 and CRY2 (cryptochrome) are substrates for phosphorylation by a phytochrome A-associated kinase activity. Several mutations within the CRY1 C terminus lead to reduced phosphorylation by phytochrome preparations in vitro. Yeast two-hybrid interaction studies using expressed C-terminal fragments of CRY1 and phytochrome A from Arabidopsis confirm a direct physical interaction between both photoreceptors. In vivo labeling studies and specific mutant alleles of CRY1, which interfere with the function of phytochrome, suggest the possible relevance of these findings in vivo.  相似文献   

6.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings.  相似文献   

7.
A new mutant called psi2 (for phytochrome signaling) was isolated by screening for elevated activity of a chlorophyll a/b binding protein-luciferase (CAB2-LUC) transgene in Arabidopsis. This mutant exhibited hypersensitive induction of CAB1, CAB2, and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) promoters in the very low fluence range of red light and a hypersensitive response in hypocotyl growth in continuous red light of higher fluences. In addition, at high- but not low-light fluence rates, the mutant showed light-dependent superinduction of the pathogen-related protein gene PR-1a and developed spontaneous necrotic lesions in the absence of any pathogen. Expression of genes responding to various hormone and environmental stress pathways in the mutant was not significantly different from that of the wild type. Analysis of double mutants demonstrated that the effects of the psi2 mutation are dependent on both phytochromes phyA and phyB. The mutation is recessive and maps to the bottom of chromosome 5. Together, our results suggest that PSI2 specifically and negatively regulates both phyA and phyB phototransduction pathways. The induction of cell death by deregulated signaling pathways observed in psi2 is reminiscent of retinal degenerative diseases in animals and humans.  相似文献   

8.
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl- and K+. The postshrinking volume recovery is achieved by K+ and Cl- influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.  相似文献   

9.
In response to sterol deprivation, two sequential proteolytic cleavages release the NH2-terminal fragments of sterol regulatory element-binding proteins (SREBPs) from cell membranes. The fragments translocate to the nucleus where they activate genes involved in cholesterol and fatty acid metabolism. The SREBPs are bound to membranes in a hairpin fashion. The NH2-terminal and COOH-terminal domains face the cytoplasm, separated by two membrane spanning segments and a short lumenal loop. The first cleavage occurs at Site-1 in the lumenal loop. The NH2-terminal fragment is then released by cleavage at Site-2, which is believed to lie within the first transmembrane segment. Here, we use a novel cysteine panning method to identify the second cleavage site (Site-2) in human SREBP-2 as the Leu484-Cys485 bond that lies at the junction between the cytoplasmic NH2-terminal fragment and the first transmembrane segment. We transfected cells with cDNAs encoding fusion proteins with single cysteine residues at positions to the NH2-terminal and COOH-terminal sides of cysteine 485. The NH2-terminal fragments were tested for susceptibility to modification with Nalpha-(3-maleimidylpropionyl)biocytin, which attaches a biotin group to cysteine sulfhydryls. Cysteines to the NH2-terminal side of cysteine 485 were retained on the NH2-terminal fragment, but cysteines to the COOH-terminal side of leucine 484 were lost. Leucine 484 is three residues to the COOH-terminal side of the tetrapeptide Asp-Arg-Ser-Arg, which immediately precedes the first transmembrane segment and is required for Site-2 cleavage.  相似文献   

10.
We expressed the NH2-terminal domain of the multidomain, multifunctional enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), using a baculovirus expression system in insect cells. Expression of the 203-amino acid NH2-terminal domain (residues 1-203), which is 24-30% identical to a group of glycinamide ribonucleotide transformylases (EC 2.1.2.2), resulted in the appearance of insoluble recombinant protein apparently due to incorrect folding. The longer NH2-terminal recombinant protein (residues 1-310), which shares 32% identity with Escherichia coli L-methionyl-tRNA formyltransferase (EC 2.1.2.9), was expressed as a soluble protein. During expression, this protein was released from cells to the culture medium and was purified from the culture medium by 5-formyltetrahydrofolate-Sepharose affinity chromatography followed by chromatography on a Mono-Q column. We found that the purified NH2-terminal domain bears a folate binding site, possesses 10-formyltetrahydrofolate hydrolase activity, and exists as a monomer. Titration of tryptophan fluorescence showed that native FDH bound both the substrate of the reaction, 10-formyl-5, 8-dideazafolate, and the product of the reaction, 5,8-dideazafolate, with the same affinities as its NH2-terminal domain did and that both proteins bound the substrate with a 50-fold higher affinity than the product. Neither the NH2-terminal domain nor its mixture with the previously purified COOH-terminal domain had 10-formyltetrahydrofolate dehydrogenase activity. Formation of complexes between the COOH- and NH2-terminal domains also was not observed. We conclude that the 10-formyltetrahydrofolate dehydrogenase activity of FDH is a result of the action of the aldehyde dehydrogenase catalytic center residing in the COOH-terminal domain on the substrate bound in the NH2-terminal domain and that the intermediate domain is necessary to bring the two functional domains together in the correct orientation.  相似文献   

11.
The cellulosome-integrating protein CipA, which serves as a scaffolding protein for the cellulolytic complex produced by Clostridium thermocellum, comprises a COOH-terminal duplicated segment termed the dockerin domain. This paper reports the cloning and sequencing of a gene, termed sdbA (for scaffoldin dockerin binding), encoding a protein which specifically binds the dockerin domain of CipA. The sequenced fragment comprises an open reading frame of 1,893 nucleotides encoding a 631-amino-acid polypeptide, termed SdbA, with a calculated molecular mass of 68,577 kDa. SAA comprises an NH2-terminal leader peptide followed by three distinct regions. The NH2-terminal region is similar to the NH2-terminal repeats of C. thermocellum OlpB and ORF2p. The central region is rich in lysine and harbors a motif present in Streptococcus M proteins. The COOH-terminal region consists of a triplicated sequence present in several bacterial cell surface proteins. The NH2-terminal region of SdbA and a fusion protein carrying the first NH2-terminal repeat of OlpB were shown to bind the dockerin domain of CipA. Thus, a new type of cohesin domain, which is present in one, two, and four copies in SdbA, ORF2p, and OlpB, respectively, can be defined. Since OlpB and most likely SdbA and ORF2p are located in the cell envelope, the three proteins probably participate in anchoring CipA (and the cellulosome) to the cell surface.  相似文献   

12.
LytA amidase is the best known bacterial autolysin. It breaks down the N-acetylmuramoyl-L-alanine bonds in the peptidoglycan backbone of Streptococcus pneumoniae and requires the presence of choline residues in the cell-wall teichoic acids for activity. Genetic experiments have supported the hypothesis that its 36-kDa chain has evolved by the fusion of two independent modules: the NH2-terminal module, responsible for the catalytic activity, and the COOH-terminal module, involved in the attachment to the cell wall. The structural organization of LytA amidase and of its isolated COOH-terminal module (C-LytA) and the variations induced by choline binding have been examined by differential scanning calorimetry and analytical ultracentrifugation. Deconvolution of calorimetric curves have revealed a folding of the polypeptide chain in several independent or quasi-independent cooperative domains. Elementary transitions in C-LytA are close but not identical to those assigned to the COOH-terminal module in the complete amidase, particularly in the absence of choline. These results indicate that the NH2-terminal region of the protein is important for attaining the native tertiary fold of the COOH terminus. Analytical ultracentrifugation studies have shown that LytA exhibits a monomer <--> dimer association equilibrium, through the COOH-terminal part of the molecule. Dimerization is regulated by choline interaction and involves the preferential binding of two molecules of choline per dimer. Sedimentation velocity experiments give frictional ratios of 1.1 for C-LytA monomer and 1.4 for C-LytA and LytA dimers; values that deviated from that of globular rigid particles. When considered together, present results give evidence that LytA amidase might be described as an elongated molecule consisting of at least four domains per subunit (two per module) designated here in as N1, N2, C1, and C2. Intersubunit cooperative interactions through the C2 domain in LytA dimer occur under all experimental conditions, while C-LytA requires the saturation of low affinity choline binding sites. The relevance of the structural features deduced here for LytA amidase is examined in connection with its biological function.  相似文献   

13.
Previous studies identified three COOH-terminal residues in staphylococcal enterotoxin E (SEE; Asp200, Pro206, and Asp207) that in part mediate TCR V beta recognition. We have identified an additional three residues near the NH2-terminus of SEE (Arg20, Asn21, and Ser24 that are needed in conjunction with these COOH-terminal residues to fully restore native levels of V beta-specific T cell proliferation. A staphylococcal enterotoxin A SEA-SEE hybrid molecule containing the NH2-terminal V beta determinants of SEE to activate alone exhibited V beta specificities of both SEA and SEE, indicating that these residues of SEE independently contribute to V beta recognition and do not obscure the native V beta determinants of SEA. These findings suggest that the ability of SEE to activate certain V beta-specific T cell subsets may result from multiple interactions with a single TCR beta-chain or perhaps by cross-linking two TCR. High affinity binding to HLA-DR1, a property of native SEA, was not altered in the SEA-SEE hybrid enterotoxins containing amino acid substitutions in regions 20 to 24 and 200 to 207, indicating that residues comprising the V beta determinants of SEE are separate from residues that contribute to HLA-DR1 binding affinity. Computer models of the predicted structure of SEE revealed that the V beta determinants of SEE are located on two adjacent solvent-exposed loops. Thus, the residues of SEE that mediate V beta recognition may coalesce to form a TCR binding site with specificities for multiple TCR beta-chains.  相似文献   

14.
Neurocan is a member of the aggrecan family of proteoglycans which are characterized by NH2-terminal domains binding hyaluronan, and COOH-terminal domains containing C-type lectin-like modules. To detect and enhance the affinity for complementary ligands of neurocan, the COOH-terminal neurocan domain was fused with the NH2-terminal region of tenascin-C, which contains the hexamerization domain of this extracellular matrix glycoprotein. The fusion protein was designed to contain the last downstream glycosaminoglycan attachment site and was expressed as a proteoglycan. In ligand overlay blots carried out with brain extracts, it recognized tenascin-C. The interaction was abolished by the addition of EDTA, or TNfn4,5, a bacterially expressed tenascin-C fragment comprising the fourth and fifth fibronectin type III module. The fusion protein directly reacted with this fragment in ligand blot and enzyme-linked immunosorbent assay procedures. Both tenascin-C and TNfn4,5 were retained on Sepharose 4B-linked carboxyl-terminal neurocan domains, which in BIAcore binding studies yielded a KD value of 17 nM for purified tenascin-C. We conclude that a divalent cation-dependent interaction between the COOH-terminal domain of neurocan and those fibronectin type III repeats is substantially involved in the binding of neurocan to tenascin-C.  相似文献   

15.
Elongation factor 3 (EF-3) is an essential requirement of the fungi for translational elongation. EF-3 is an ATPase, and the hydrolytic activity is stimulated 2 orders of magnitude by yeast ribosomes. Limited trypsinolysis of EF-3 results in the cleavage of a single peptide bond between residues 774 (Arg) and 775 (Gln), generating polypeptides of approximate molecular mass 90 and 30 kDa. The 90-kDa fragment is relatively resistant to proteolysis and retains ribosome-independent ATPase activity. The 30-kDa fragment is further proteolyzed into smaller fragments and retains the specificity for binding to yeast ribosomes. Both the intact EF-3 and the 30-kDa fragment are protected from proteolysis by yeast ribosomes. EF-3 is NH2 terminally blocked, and so is the 90-kDa fragment. The COOH terminally derived 30-kDa fragment contains glutamine (residue 775) at the NH2-terminal end. A construct was designed representing the COOH-terminal domain of EF-3 (30-kDa fragment), subcloned, and expressed as a glutathione S-transferase fusion in yeast. The glutathione S-transferase-30-kDa peptide remains stringently associated with ribosomes. Isolated fusion peptide rebinds to yeast ribosomes with high affinity. Based on these results, we propose that at least one of the ribosome-binding sites of EF-3 resides at the COOH-terminal end of the protein.  相似文献   

16.
Contraction of vertebrate striated muscle is regulated by the strong Ca(2+)-dependent interaction between troponin I (TnI) and troponin C (TnC). To critically evaluate this interaction, we generated four recombinant deletion fragments of rabbit fast skeletal TnI: the NH2-terminal fragment (TnI1-94), the NH2 terminus and the inhibitory region (TnI1-120), the inhibitory region and the COOH terminus (TnI96-181), and the COOH-terminal fragment (TnI122-181) containing amino acid residues 1-94, 1-120, 96-181, and 122-181, respectively. Native TnC and seven thiol mutants, containing single cysteine residues in the two globular domains and in the central helix of TnC, e.g., Cys-12, Cys-21, Cys-57, Cys-89, Cys-122, Cys-133, and Cys-158, were labeled with 4-maleimidobenzophenone, and their interaction with the recombinant TnI fragments and the synthetic inhibitory peptide (TnI98-114, residues 98-114) was studied by photo-cross-linking. Extensive cross-linking occurred between various domains of TnC and TnI. The cross-linking patterns (a) showed that both NH2- and COOH-terminal fragments of TnI are accessible to both of the globular domains of TnC, (b) indicated that linkage of the NH2- and COOH-terminal sequences to the inhibitory region of TnI (TnIir) caused marked enhancement of cross-linking with native TnC and all seven thiol mutants, and (c) identified the region in TnC where TnIir binds as that containing residues 98, 133, 158, and 57. Thus, the results suggest that TnI and TnC may adopt flexible and dynamic conformations in which multiple interactions involving various domains of the two polypeptides occur and TnIir acting as a linker facilitates these interactions. The interaction of TnI and its fragments with actin, TnC, and TnT, considered together with the biological activity indicates that residues 96-120 represent a key structural and functional region of TnI. Whereas the NH2-terminal region of TnI stabilizes binding to TnC and TnT, the COOH-terminal region stabilizes TnC and actin binding.  相似文献   

17.
The GLUT4 glucose transporter appears to be targeted to a unique insulin-sensitive intracellular membrane compartment in fat and muscle cells. Insulin stimulates glucose transport in these cell types by mediating the partial redistribution of GLUT4 from this intracellular compartment to the plasma membrane. The structural basis for the unique targeting behavior of GLUT4 was investigated in the insulin-sensitive L6 myoblast cell line. Analysis of immunogold-labeled cells of independent clonal lines by electron microscopy indicated that 51-53% of GLUT1 was present in the plasma membrane in the basal state. Insulin did not significantly affect this distribution. In contrast, only 4.2-6.1% of GLUT4 was present in the plasma membrane of basal L6 cells and insulin increased this percentage by 3.7-6.1-fold. Under basal conditions and after insulin treatment, GLUT4 was detected in tubulovesicular structures, often clustered near Golgi stacks, and in endosome-like vesicles. Analysis of 25 chimeric transporters consisting of reciprocal domains of GLUT1 and GLUT4 by confocal immunofluorescence microscopy indicated that only the final 25 amino acids of the COOH-terminal cytoplasmic tail of GLUT4 were both necessary and sufficient for the targeting pattern observed for GLUT4. A dileucine motif present in the COOH-terminal tail of GLUT4 was found to be necessary, but not sufficient, for intracellular targeting. Contrary to previous studies, the NH2 terminus of GLUT4 did not affect the subcellular distribution of chimeras. Analysis of a chimera containing the COOH-terminal tail of GLUT4 by immunogold electron microscopy indicated that its subcellular distribution in basal cells was very similar to that of wild-type GLUT4 and that its content in the plasma membrane increased 6.8-10.5-fold in the presence of insulin. Furthermore, only the chimera containing the COOH terminus of GLUT4 enhanced insulin responsive 2-deoxyglucose uptake. GLUT1 and two other chimeras lacking the COOH terminus of GLUT4 were studied by immunogold electron microscopy and did not demonstrate insulin-mediated changes in subcellular distribution. The NH2-terminal cytoplasmic tail of GLUT4 did not confer intracellular sequestration and did not cause altered subcellular distribution in the presence of insulin. Intracellular targeting of one chimera to non-insulin-sensitive compartments was also observed. We conclude that the COOH terminus of GLUT4 is both necessary and sufficient to confer insulin-sensitive subcellular targeting of chimeric glucose transporters in L6 myoblasts.  相似文献   

18.
The actin cytoskeleton of nonmuscle cells undergoes extensive remodeling during agonist stimulation. Lamellipodial extension is initiated by uncapping of actin nuclei at the cortical cytoplasm to allow filament elongation. Many actin filament capping proteins are regulated by phosphatidylinositol 4,5-bisphosphate (PIP2), which is hydrolyzed by phospholipase C. It is hypothesized that PIP2 dissociates capping proteins from filament ends to promote actin assembly. However, since actin polymerization often occurs at a time when PIP2 concentration is decreased rather than increased, capping protein interactions with PIP2 may not be regulated solely by the bulk PIP2 concentration. We present evidence that PIP2 binding to the gelsolin family of capping proteins is enhanced by Ca2+. Binding was examined by equilibrium and nonequilibrium gel filtration and by monitoring intrinsic tryptophan fluorescence. Gelsolin and CapG affinity for PIP2 were increased 8- and 4-fold, respectively, by microM Ca2+, and the Ca2+ requirement was reduced by lowering the pH from 7.5 to 7.0. Studies with the NH2- and COOH-terminal halves of gelsolin showed that PIP2 binding occurred primarily at the NH2-terminal half, and Ca2+ exposed its PIP2 binding sites through a change in the COOH-terminal half. Mild acidification promotes PIP2 binding by directly affecting the NH2-terminal sites. Our findings can explain increased PIP2-induced uncapping even as the PIP2 concentration drops during cell activation. The change in gelsolin family PIP2 binding affinity during cell activation can impact divergent PIP2-dependent processes by altering PIP2 availability. Cross-talk between these proteins provides a multilayered mechanism for positive and negative modulation of signal transduction from the plasma membrane to the cytoskeleton.  相似文献   

19.
A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.  相似文献   

20.
While Aspergillus ficuum phytaseA (phyA) was rapidly inactivated by 1,2-cyclohexanedione and phenylglyoxal, both specific modifiers of arginine, phytaseB (phyB) showed a markedly different behavior. First, phyB was totally insensitive to 1,2-cyclohexanedione even in the presence of 0.2 M guanidinium hydrochloride; second, the enzyme showed a great deal of resistance to inactivation by phenylglyoxal. Taken together, these results indicate that the chemical environment of the active site of phyB is very different from that of the active site of phyA. Despite sequence similarities of the active site region in these two proteins, their differential behavior to arginine modifiers indicates that other parts of the protein play a role in the active site formation. We expected some differences in the structure since the proteins have dissimilar kinetic parameters and pH optima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号