首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
性能评估和参数优化是设计WDM系统时需要解决的主要问题,本文采用自适应重要性采样(IS)方法,推导得出由波长路由器件和光接收机构成的WDM系统模型的串扰和误码率,与传统的高斯近拟法相比,更加准确,应用范围更广。  相似文献   

2.
Four-wave mixing (FWM) is the most serious fiber nonlinearity associated with low-input optical power levels in long-haul multichannel optical systems employing dispersion-shifted fiber. To reduce the crosstalk due to FWM, a generalized suboptimum unequally spaced channel allocation (S-USCA) technique is proposed and investigated. Even though the developed technique is useful in combating FWM crosstalk in wavelength division multiplexing (WDM) lightwave systems with up to 12 channels, its main virtue is in designing multichannel WDM lightwave systems with more than 12 channels. Comparisons of power penalty due to FWM between equal channel spacing (ECS) systems and the S-USCA systems are presented. It is shown that for an intensity modulation/direct detection (IM/DD) transmission system operating in an optical bandwidth of 16 nm with 0 dBm (1 mW) peak optical input power per channel, while a conventional ECS WDM system with 0.84-nm channel spacing cannot even achieve a bit-error rate (BER)=10-9, the suboptimum technique developed in this paper, for the same minimum channel spacing, can achieve a BER=10-9 with an FWM crosstalk power of less than 1 dB at the worst channel in a 20-channel WDM system  相似文献   

3.
Backscattering-induced crosstalk in WDM optical wireless communication   总被引:1,自引:0,他引:1  
The crosstalk effect of aerosol backscatter on the performance of a wavelength-division-multiplexed (WDM) optical wireless communication (OWC) system is investigated, analyzed, and quantified. An OWC link could be a segment within a metropolitan area network (MAN) or a ground-station-to-space link of a satellite communication system. In these cases, a WDM transmitter and receiver are housed in one transceiver unit with parallel, or near-parallel, optic axes. The crosstalk at the receiver is caused by light from the transmitted signal of the same transceiver, which has been backscattered by molecules and aerosols in the atmosphere. This is exacerbated in the presence of fog and haze, in which case both the desired signal from another transceiver is attenuated by scattering and the backscatter-induced crosstalk increases. A bit-error-rate (BER) model is derived that takes into consideration the dominant noise sources, including backscatter-induced crosstalk and signal mixing with amplified stimulated emission (ASE) from an optical preamplifier at the receiver. The numerical calculations in this paper indicate that, in moderate fog, the BER may increase by an order of magnitude or more due to backscatter, depending upon the atmospheric extinction coefficient.  相似文献   

4.
在波分复用(WDM)系统中不同信道之间的串扰将恶化每路信号的消光比,而多波长光交叉连接网络中还会出现带内串扰的情况,它所产生的拍频噪声对系统的影响远大于带间串扰。从不同的角度分析了这两种串扰,理论分析的结果与实验现象吻合良好。  相似文献   

5.
WDM systems with unequally spaced channels   总被引:9,自引:0,他引:9  
Crosstalk due to four-wave mixing (FWM) is the dominant nonlinear effect in long-haul multichannel optical communication systems employing dispersion-shifted fiber. A method is discussed to find non-uniform channel separations for which no four-wave mixing product is superimposed on any of the transmitted channels, therefore suppressing FWM crosstalk. The residual crosstalk, due to channel power depletion only, is analytically evaluated for intensity-modulated repeaterless wavelength-division-multiplexed (WDM) systems and compared to experimental results. The theory includes the effect of the channel depletion on the amplitude of each phase-matched FWM wave. The probability of error is evaluated including the statistics of the pattern dependent channel depletion. The BER curve computed for an 8-channel WDM system is found to be in good agreement with experimental results. In the experiment, repeaterless transmission of eight 10 Gb/s WDM channels over 137 km (11 Tb/s-km) of dispersion-shifted fiber was demonstrated and error-free operation was achieved over a wide range of input powers using unequally spaced channels. The same system with equally spaced channels could not achieve a probability of error lower than 10-6. The use of unequal channel spacing allowed fiber input power to be increased by as much as 7 dB, which could be translated into a fivefold increase of the bit rate per channel (and therefore of the system capacity), or to an increase in the system length of about 30 km  相似文献   

6.
分析了波分复用 (WDM)全光通信环网中的串扰起因 ,指出单纤 WDM环网中的串扰分析可以简化为单一串扰源的情况。接着从接收机检测光电流的概率分布函数出发 ,给出了单一串扰源的精确误码率表达式 ,串扰功率代价的分析结果与实验测量非常吻合。  相似文献   

7.
We present extensive numerical studies on the determination of coherent wavelength-division multiplexing (WDM) crosstalk penalties for ultradense wavelength-division multiplexed (DWDM) systems, focusing on carrier-suppressed return-to-zero (CSRZ) as well as on 67% duty cycle differential phase-shift keying (67% RZ-DPSK) at a spectral efficiency of 0.8 b/s/Hz. Our analyses reveal large statistical variations in the predicted required optical signal-to-noise ratio (OSNR) when changing the WDM channels' interference conditions, in particular their relative optical phases and their relative time shifts. The strong impact of the exact WDM interference conditions can lead to simulation inaccuracies of many decibels when using standard OSNR simulations techniques. In measurements of DWDM system performance, the long averaging time of bit error ratio (BER) test sets can hide these burst-error generating penalty variations, and may, therefore, lead to wrong interpretations, especially for systems employing forward error correction (FEC). To overcome the DWDM simulation problem, we introduce and thoroughly assess a new simulation technique that allows us to efficiently and accurately capture the average required OSNR penalty for DWDM systems with negligible statistical error.  相似文献   

8.
Interferometric crosstalk, arising from the detection of undesired signals at the same nominal wavelength, may introduce large power penalties and bit-error rate (BER) floor significantly restricting the scalability of optical networks. In this paper, interferometric crosstalk reduction in optical wavelength-division multiplexing (WDM) networks by phase scrambling is theoretically and experimentally investigated. Enhancement of 7- and 5-dB tolerance toward crosstalk is measured in a 2.5-Gb/s transmission link of 100 km and 200 km of SSMF, respectively. This result proves the feasibility of optical networking in the local area network/metropolitan area network (LAN/MAN) domain while tolerating the relatively high crosstalk levels of present integrated optical switching and cross-connect technology. Experiment is in good agreement with theory. Recommendations on the use of phase scrambling to reduce crosstalk in WDM systems are given  相似文献   

9.
This paper shows-both experimentally and through Monte Carlo simulation-that in wavelength division multiplexing (WDM) lightwave networks coherent crosstalk in network nodes causes multipath fading on a seconds to minutes time scale. The result of such fading is that the bit error rate (BER) fluctuates significantly as a function of time. We find that for eight crosstalk paths a signal-to-crosstalk ratio (SXR) greater than 40 dB is required to make this fading negligible. The simulation also shows that for 32 crosstalk paths an SXR as much as 55 dB is required to combat the crosstalk penalty  相似文献   

10.
Semiconductor laser amplifiers cause both distortion and crosstalk in WDM systems due to gain saturation. A method using light injection is experimentally demonstrated to reduce distortion and crosstalk. In a two-channel experiment with a data rate of 2.5 Gbit/s, it is found that light injection can eliminate the BER floor due to distortion and crosstalk  相似文献   

11.
Statistical properties of stimulated Raman crosstalk in WDM systems   总被引:3,自引:0,他引:3  
The crosstalk variance of stimulated Raman crosstalk in wavelength-division-multiplexing (WDM) systems is derived analytically in a closed-form formula for all systems with different walkoff length. The probability density function (pdf) of stimulated Raman crosstalk is found to be lognormal distribution (Gaussian distribution in decibel scale). Both power penalty and power limit induced by Raman crosstalk are evaluated and can be applied to single- and multispan WDM systems  相似文献   

12.
波分复用环网中带内串扰的分析与实验论证   总被引:1,自引:0,他引:1  
本文分析了波分复用(WDM)全光通信环网中串扰起因,指出WDM环网中的串扰分析可以简化单一串扰源的情况。从接收机检测光电流的概率分布函数出发,给出了一单串扰源的精确误码率表达式,串扰功率代价的分析结果与论证实验的测量非常吻合。  相似文献   

13.
Acousto-optic tunable filters (AOTF) using TE-TM mode conversion are attractive for wavelength routers, such as WDM add/drop multiplexers or WDM cross-connect switching fabrics, due to their multichannel selectivity. However, their multichannel selection creates optical beat-induced crosstalk, the so called “coherent crosstalk”, due to the interaction of the lightwave with several acoustic waves. This paper evaluates the transmission characteristics of WDM systems employing AOTF's. First, we develop an analytical model of coherent crosstalk based on the coupled mode theory. Next, we examine coherent crosstalk induced BER degradation both theoretically and experimentally for optical WDM systems and show that the analytical studies well support the experimental results. Finally, maximum AOTF cascade number is estimated based on these results for WDM based wavelength routing networks  相似文献   

14.
In this paper, theory and experimental results for wavelength-division-multiplexing (WDM) channel generation, formed by multi-line optical injection locking, is presented. A small-signal model to deal with wide-spectral-band optical injection problems has been developed. Based on this model, the crosstalk noise of an injection-locked laser in a coherent WDM system is assessed analytically. Experimental results on locking range, stability, and crosstalk noise confirms the modeling results, which indicate that stable and low-noise channels can be generated by this approach.  相似文献   

15.
The amplification of wavelength division multiplexed (WDM) data in fiber-optical parametric amplifiers give rise to cross-gain saturation and four-wave mixing crosstalk. This crosstalk affects the data quality, especially at higher input powers. The statistics in this regime are nontrivial to obtain and we present, for the first time, a model based on a combination of theory and numerics that gives accurate statistics at a highly reduced computational cost. This model is obtained from an exact solution of WDM data being amplified in the strictly nonlinear regime which is derived in this paper. Using this model, predictions of the bit-error rate (BER) can be obtained even at very low rates impossible to reach by numerical methods alone. We show that there exists no trivial relationship between the BER and the commonly used quality measure, the Q-value. We also study how different amplifier parameters affect the statistics and suggest design rules to reduce channel crosstalk.  相似文献   

16.
王劲松  毛庆和 《通信学报》1999,20(12):19-24
本文研究了波分复用系统中光纤色散对受激喇曼散射串扰的影响,提出了在考虑信号调制几率特性和脉冲走离效应后,系统误码率和功率代价的理论计算方法,并对典型系统进行了数值模拟。研究结果表明,由光纤色散引起的信号脉冲走离可以降低受激喇曼散射串扰,尤其是在复用信道较多、信号传输速率较高的系统中,光纤色散的作用更加明显  相似文献   

17.
We theoretically investigate the performance limitations of subcarrier multiplexed (SCM) wavelength-division-multiplexing (WDM) systems using optical double-sideband (DSB) modulated, 16-quadrature amplitude-modulated (QAM) signals. The performance limitations are investigated using crosstalk power and SCM channel spacing for various transmission conditions, including impairment factors such as dispersion and fiber nonlinearities for a single wavelength channel first. The effects of WDM channel spacing on SCM systems with multiwavelength channels are also evaluated via the calculated bit error rate (BER) performance, based on the performance limitations found in the single-wavelength simulation. This enables us to provide guidelines for the design of SCM/WDM systems for fiber-to-the-home (FTTH) network in WDM–passive optical network (PON) architecture, based on the performance limitations.   相似文献   

18.
This paper describes the design and performance of anMary frequency shift keyed (FSK) signaling and demodulation scheme for an optical communication system using semiconductor lasers and heterodyne detection. Frequency or phase noise in semiconductor lasers causes spectral spreading, producing a nonzero linewidth laser signal. This degrades communication performance when compared to a system using an ideal laser with zero linewidth. We present estimates of the bit error rate (BER) performance ofM-ary frequency shift keying (FSK) with noncoherent demodulation in the presence of white Gaussian frequency noise and additive channel noise. This is typical of an optical system using semiconductor lasers and heterodyne detection. Estimates use the union-Chernoff bound with a simplified channel model to predict the effects of frequency noise. Two effects of frequency noise are identified: signal attenuation or suppression, and crosstalk. These cause an offset in the BER curve from the BER in the absence of frequency noise, and an error rate floor, respectively. The error rate floor is lower than previously predicted. When performance is not crosstalk limited,M-ary FSK is found to perform better than binary FSK with the same system bandwidth constraints, as would be predicted if ideal lasers are used. Theoretical results are compared with Monte Carlo simulations of the system.  相似文献   

19.
We present a general and rigorously formulated dynamic receiver model aiming at 10-40-Gb/s wavelength division multiplexing (WDM) system design applications. A demultiplexing (DEMUX) characteristic with periodic transfer function has been treated in detail and it has been indicated how the model should be adjusted to take into consideration a general type of noise spectral density (NSD). The bit error ratio (BER) is evaluated accounting for the influence of non-Gaussian detected amplified spontaneous emission (ASE) noise, noise correlation between stochastic noise samples in the receiver, the gain and effective noise figure variation with wavelength of optical amplifiers, channel crosstalk, and intersymbol interference (ISI) effects caused by nonideal signal modulation, fiber dispersion, fiber nonlinearities, optical MUX, and DEMUX filtering and the impulse response of the electrical low-pass filter in the receiver. Also, the influence of shot and thermal noise is taken into account. Numerical results for the BER are presented considering a realistic 16-channel 10-Gb/s WDM system operating in the C-band using normal transmission fibers and including cascaded erbium-doped fiber amplifiers (EDFAs) with dispersion compensating fibers  相似文献   

20.
Cross-phase modulation (XPM) and self-phase modulation (SPM) induced nonlinear crosstalk has been studied analytically for coherent DPSK and OOK signal in NRZ- and RZ-modulation format for WDM system employing distributed Raman amplifier. The study shows that 40 Gb/s RZ-DPSK signal with 33.3% duty cycle experiences minimum XPM and SPM induced crosstalk. The results also reveal that minimum crosstalk was induced in backward pumped DRA among the three pumping schemes i.e. forward, backward and bi-directional. Results assume importance for minimizing deleterious XPM and SPM effects in optical communication system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号