首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The real part of the complex refractive index is calculated for photon energies over the region from 1.2 to 1.8 eV for AlxGa 1-xAs compounds as a function of x. No singularity is predicted. Rather, a change in the functional form of the refractive index, n occurs as the photon energy passes through the bandgap energy, G, leading to a local maximum or, more accurately, a plateau region in n as a function of frequency, which is observed experimentally. The effect of a finite-spin orbit-splitting energy and the effect of higher conduction bands are included. Theoretical and experimental results are compared for AlxGa 1-xAs over a range of mole fractions from x=0 to x=0.198  相似文献   

2.
An electrolyte electroreflectance study on Hg1-xCdxSe alloy films is first reported. The critical point energies E0 and E1 are obtained for different CdSe composition samples and material homogeneities are also discussed  相似文献   

3.
Monte Carlo methods are used to compare electronic transport and device behavior in n+-AlxGa1-xAs/GaAs modulation-doped field-effect transistors (MODFETs) at 300 K for x =0.10, 0.15, 0.22, 0.30, 0.35, and 0.40. The differences between the x=0.22 and x=0.30 MODFETs with respect to parasitic conduction in AlxGa1-xAs, gate currents, and switching times, are of particular interest. The donor-related deep levels in AlxGa1-xAs, are disregarded by assuming all donors to be fully ionized, and the focus is only on the confinement and transport of the carriers. The following quantities are studied in detail: transfer characteristics (ID versus V G), transconductance (gm), switching speeds (τON), parasitic conduction in AlxGa 1-xAs, gate current (IG), average electron velocities and energies in GaAs and AlxGa1-x As, electron concentration in the device domain, k-space transfer (to low mobility L and X valleys), and details of the real-space transfer process  相似文献   

4.
Au Schottky barrier heights on molecular-beam-epitaxial grown n-GaAs1-xSbx/N-GaAs heterostructures with x up to 0.26 have been studied. It was found that φbn=0.9-1.77x+2.89x2, or φbn≈0.77Eg-0.20 for x<0.26. The pinning position of the Fermi level with respect to the valence-band edge for x<0.26 takes the form of E pin=-0.52x+0.53 eV, which also appears to be valid for an x value up to 1.0  相似文献   

5.
InAlAs/InGaAs HBTs with various emitter junction gradings are simulated using a self-consistent Monte Carlo simulator. The effects of the emitter junction grading and the shift of the emitter-base p-n junction into the emitter depletion region due to diffusion of the base dopant are investigated. A minimum transit time of 1.18 ps is predicted for an In(Ga1-xAlx)As grading with x=0.6 at the E-B interface and JC=0.7×105 A/cm2. Graded-base designs do not offer any transit time performance improvement compared with the graded E-B approach. For transient performance, the device switching time is found to remain constant at about 2.2 ps up to x0~0.7 but increases for larger values. A cutoff frequency as high as 270 GHz was observed for x0=0.7, indicating that the best transport can be achieved from intermediately graded rather than abrupt E-B junction designs  相似文献   

6.
Constricted-mesa semiconductor lasers containing a strained-layer InGaAs single-quantum-well-separate-confinement-heterostructure have been demonstrated. Very high etching selectivity between AlxGa1-xAs (x=0.9) and AlxGa 1-xAs (x=<0.6) was achieved using diluted hydrofluoric acid to create a deeply undercut current confinement region, which enables a side contact for current injection. A process combining a self-aligned reactive ion etch and the undercut wet chemical etch has been developed for implementing a vertical twin-guide three-electrode tunable laser structure. Low-threshold currents for both single-guide devices with centered top contacts (5.2 mA) and twin-guide ones with side contacts (6.5 mA) were obtained  相似文献   

7.
The dark current properties of InxGa1-xAs photodiodes, where x is varied from 0.53 to 0.82 for extending the long wavelength cutoff from 1.7 to 2.6 μm, are described. Detailed analyses of optoelectrical parameters of In0.82Ga 0.1As photodiodes are presented. Dark current, which is a critical parameter and limits the operation of the photodiode, is analyzed and compared with the experimental values. Typical characteristics of photodiodes with cutoff wavelengths of 1.7 μm (x=0.53), 2.2 μm (x=0.72), and 2.6 μm (x=0.82) are presented. The typical and best values of the dark currents obtained are presented  相似文献   

8.
In an effort to enhance the conduction band discontinuity between channel and insulator, InxAl1-xAs/n+-In 0.53Ga0.47As heterostructure field-effect transistors (HFETs) were fabricated with InAs mole fractions in the In xAl1-xAs gate insulator of x=0.52 (lattice matching), 0.48, 0.40, and 0.30. Decreasing the InAs mole fraction in the insulator results in reduced forward- and reverse-bias gate currents, increased reverse gate breakdown voltage, and reduced real-space transfer of hot electrons from channel to gate. Down to x =0.40, these improvements trade off with a slightly reduced transconductance, but the gain in gate bias swing results in an increase in maximum current drivability. From x=0.40 to x=0.30, there is a drastic decrease in transconductance, coincident with a high density of misfit dislocations  相似文献   

9.
Record high fTLg products of 57 and 46 GHz-μm have been achieved in Ga1-x Inx As/AlInAs MODFETs with a strain compensated channel of x=0.77 and a lattice-matched channel of x=0.53, respectively. Although gm as high as 950 mS/mm has been obtained by conventional deep recess for the gate, these latter devices show a prominent kink effect which lowers fT and the voltage gain. By limiting the depth of final nonselective recess etch to 3 nm with the help of selective step etches, fT as high as 47 GHz and gm as high as 843 mS/mm have been achieved for MODFETs with x=0.77 and Lg=1.1 μm  相似文献   

10.
pin photodiodes with a 2.3 μm absorption edge are presented, using hydride vapour phase epitaxy. A Ga1-yInyAs (y=0.72) absorption layer, lattice-mismatched to the InP substrate, was grown on an InAsxP1-x (x=0-0.33) graded composition buffer layer. Typical dark current was 5 μA (0.03 A/cm2) at -6 V. Effective carrier lifetime of 0.05 μs was estimated from I/V characteristics  相似文献   

11.
A theoretical investigation is presented of the dependence of electroabsorption in GaAs/AlxGa1-xAs multiple-quantum-well (MQW) structures on the MQW parameters (Al mole fraction x, well thickness Lz barrier thickness Lb and interface quality) and on the applied electric field studied. The on/off ratio of a modulator using MQWs with x=0.45, Lz=75 Å, and L b=78 Å is predicted to increase by 20% compared to that of a modulator using MQWs with x=0.3, Lz =100 Å, and Lb=100 Å, when the MQW total active region thickness is 1 μm  相似文献   

12.
The authors describe the electrical and optical characterization of three Hg1-xCdxTe avalanche photodiodes manufactured using planar technology with composition parameter x near 0.6. This alloy composition leads to devices that are well suited for 1.55-μm detection. From the noise analysis under multiplication, the authors show the tight dependence of the ratio β/α (of the hole; and electron ionization coefficient, respectively) upon x and the ratio Δ/Eg where Δ is the spin-orbit splitting energy and E g is the bandgap energy. It turns out that in these alloys around x=0.6, Δ is very close to the bandgap energy so β/α reaches its maximum value. Owing to this property, which is characteristic of II-VI compounds, Hg1-xCdxTe is a good candidate for 1.3-μm to 1.6-μm avalanche photodiodes  相似文献   

13.
Low-temperature microwave measurements of both lattice-matched and pseudomorphic InxGa1-xAs/In0.48As (x=0.53, 0.60, and 0.70) channel MODFETs on InP substrates were carried out in a cryogenic measurement system. The measurements were done in the temperature range of 77 to 300 K and in the frequency range of 0.5 to 11.0 GHz at different bias conditions. The cutoff frequency ( fT) for the InxGa1-xAs/In0.52Al0.48As MODFETs improved from 22 to 29 GHz, 29 to 38 GHz, and 39 to 51 GHz, for x=0.53, 0.60, and 0.70, respectively, as the temperature was lowered from 300 to 77 K, which is approximately a 31% increase at each composition. No degradations were observed in device performance. These results indicate an excellent potential of the pseudomorphic devices at low temperatures  相似文献   

14.
The authors have studied, both theoretically and experimentally, the effects of biaxial strain upon the performance characteristics of broad-area InP-InGaAsP-InxGa1-xAs (0.33⩽x ⩽0.73) separate confinement heterostructure multiquantum-well lasers. The theoretical calculations include the effects of strain on the bandstructure and the Auger recombination rates. A pronounced dependence of the threshold current density Jth upon x is observed. The lowest measured Jth is 589 A/cm2 in an 800-μm laser with x=0.68. Also, internal quantum efficiencies as high as unity and loss coefficients as low as 5.6 cm-1 have been measured for x=0.58  相似文献   

15.
Diluted magnetic semiconductors (DMSs), i.e. semiconducting crystals whose lattice is made up in part of substitutional magnetic ions (e.g. Cd1-xMnxTe, Hg1-xFex Se, Zn1-xCoxS), are reviewed. The focus is on materials of the type A1-xII MnxB VI, which are the most thoroughly understood. However, the similarities and differences between these materials and the A1-x IIFexBVI and A1-IICoxBVI systems are discussed wherever information on the latter system is available. The band structure of the materials, which determines their basic semiconducting properties, is examined. Special attention is given to exchange interactions between the magnetic ions themselves (the d -d interaction) and the interaction between the magnetic ions and band electrons (the sp-d interaction). Magnetic phenomena in DMS alloys are considered. Special attention is given to the physics of layered structures, such as quantum wells and superlattices, involving DMS materials. The prospects of device applications made possible by the properties of DMS alloys are assessed  相似文献   

16.
We report on the magneto-optical studies of II–VI semiconductor superlattices incorporating Cd1−xMnxTe semimagnetic semiconductor layers. A variety of the observed phenomena is due to the strong exchange interaction of carrier spins with spins of magnetic ions. The giant Zeeman splitting of the exciton states, the magnetic polaron formation and the spin relaxation of photocarriers in the semimagnetic superlattices are discussed.  相似文献   

17.
Results of the lattice drift mobility in strained and unstrained SiGe alloys are reported for Ge fractions, 0.0⩽x⩽1.0. The mobilities are calculated using acoustic, optical, and alloy scattering mechanisms. Due to the strain-induced symmetry reduction in the band structure of Si1-xGex, the mobility is found to be a tensor with two distinct components parallel and perpendicular to the growth plane. Assuming that the scattering mechanisms are independent of the strain, the strained mobility increases exponentially with increasing Ge content, for x=0.3  相似文献   

18.
Strained In0.52Al0.48 As/InxGa 1-xAs (x>0.53) HEMTs (high electron mobility transistors) are studied theoretically and experimentally. A device design procedure is reported that is based on band structure and charge control self-consistent calculations. It predicts the sheet carrier density and electron confinement as a function of doping and thickness of layers. The DC performance at 300 K is presented. Wafer statistics demonstrate improvement of device characteristics with excess indium in the channel (g¯m, intr=500 and 700 mS/mm for x=0.60 and 0.65). Microwave characterization shows the fT improvement (fT=40 and 45 GHz for x=0.60 and 0.65, respectively) and the Rds limitations of the 1-μm-long-gate HEMTs  相似文献   

19.
A comprehensive one-dimensional analytical model of the graded-base AlxGa1-xAs/GaAs heterojunction bipolar transistor is presented and used to examine the influence of base grading on the current gain and the high-frequency performance of a device with a conventional pyramidal structure. Grading is achieved by varying the Al mole fraction x linearly across the base to a value of zero at the base-collector boundary. Recombination in the space-charge and neutral regions of the device is modeled by considering Schockley-Read-Hall, Auger, and radiative processes. Owing to the different dependencies on base grading of the currents associated with these recombination mechanisms, the base current is minimized, and hence the gain reaches a maximum value, at a moderate level of base grading ( x=0.1 at the base-emitter boundary). The maximum improvement in gain, with respect to the ungraded base case, is about fourfold. It is shown that the reduction in base transit time due to increased base grading leads to a 30% improvement in fT in the most pronounced case of base grading studied (x=0.3 at the base-emitter boundary). The implications this has for improving f max via increases in base width and base doping density are briefly examined  相似文献   

20.
It is shown that m-sequences over GF(qm ) of length qnm-1 corresponding to primitive polynomials in GF[qm,x] of degree n can be generated from known m-sequences over GF(q) of length qnm-1 obtained from primitive polynomials in GF[q,x] of degree mn. A procedure for generating the m-sequences over GF(q2) from m-sequences over GF(q) was given which enables the generation of m-sequences over GF( p2n). In addition it was shown that all of the primitive polynomials in GF[q,m,x] can be obtained from a complete set of the primitive polynomials in GF[q ,x]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号