首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
于维才 《化学工业》2014,(Z1):32-34,40
收集和研究用来增强的玻璃纤维种类和性能以及玻璃纤维增强的纳米复合材料的物理特性,为玻璃纤维增强的纳米复合材料框架性研究提供保证。  相似文献   

2.
《塑料》2015,(4)
研究不同含量的纯玻璃纤维对尼龙6树脂力学性能的影响,然后通过多巴胺和纳米氮化硼对玻璃纤维表面依次进行改性,研究改性前后玻璃纤维复合材料的力学性能与导热性能。结果表明:加入30%纯玻璃纤维时,复合材料力学性能最好;在加入玻璃纤维含量相同时,表面经过纳米氮化硼改性后的纤维增强尼龙6复合材料力学性能和导热性能均有很大提高。  相似文献   

3.
介绍了短纤维增强树脂基复合材料、聚酰亚胺纳米杂化薄膜材料和环氧基纳米复合材料方面的研究工作,简要概括了短玻璃纤维、短碳纤维以及与颗粒混合增强树脂基复合材料的研究结果,报道了聚酰亚胺纳米杂化薄膜材料和环氧基纳米复合材料的一些低温性能研究结果。  相似文献   

4.
芦长椿 《合成纤维》2014,(12):33-37,52
介绍了玻璃纤维增强复合材料、碳纤维增强复合材料、天然纤维增强复合材料、芳香族聚酰胺纤维增强复合材料的生产情况,重点讨论了纳米纤维复合材料、生物基复合材料、高性能聚合物复合材料的研发进展,对国内聚合物复合材料的发展提出了建议。  相似文献   

5.
采用双酚A型环氧树脂为基体,短切玻璃纤维和纳米玻璃粉为填料,通过模压加工工艺制备了双酚A型环氧树脂基复合材料。使用热失重分析仪和扫描电子显微镜分析研究了纳米玻璃粉含量对复合材料热稳定性能的影响,同时利用Kissinger法和Flynn?Wall?Ozawa法求解了双酚A型环氧树脂基复合材料的热分解动力学参数。结果表明,添加短切玻璃纤维后,双酚A型环氧树脂的最大热分解温度从365 ℃提高至369 ℃,而随着纳米玻璃粉的加入,其最大热分解温度进一步提升5 ~16 ℃。且复合材料的残炭率在65.41 %~69.15 %之间,相比双酚A型环氧树脂、短切玻璃纤维增强双酚A型环氧树脂基复合材料分别提高了69.88 %~71.51 %、22.95 %~27.11 %。同时纳米玻璃粉的加入也使得复合材料的热分解活化能得到提升,最高为153.14 kJ/mol,相比双酚A型环氧树脂单体及短切玻璃纤维材料增强双酚A型环氧树脂基复合材料的热分解活化能135.65 kJ/mol、137.46 kJ/mol显著增加。结果表明,纳米玻璃粉的引入改变了双酚A型环氧树脂基复合材料的内部微观结构,从而提高了其热稳定性能。  相似文献   

6.
纤维和树脂之间的界面结合强度是决定复合材料性能的关键因素。通过实验研究在玻璃纤维表面涂覆经硅烷偶联剂KH550表面处理的纳米SiO_2以及在PP基体中加入PP-g-MAH对玻璃纤维增强聚丙烯复合材料的界面结合强度和力学性能的影响。结果表明,纳米SiO_2经KH550表面处理后可以降低其表面能,有利于其在纤维表面分散吸附;纤维表面涂覆纳米SiO_2及在PP中加入PP-g-MAH,有利于增强纤维和树脂之间的界面结合强度,复合材料的层间剪切强度提升了116.06%,拉伸强度提升了109.14%,弯曲强度提升了99.85%。  相似文献   

7.
采用注塑成型法制备纳米SiC或Si3N4与玻璃纤维混杂填充PA6尼龙复合材料。采用MM-200型摩擦磨损试验机在干摩擦条件下考察了纳米颗粒含量及载荷对PA6复合材料摩擦磨损性能的影响。采用扫描电子显微镜观察分析磨损表面形貌及磨损机理。结果表明:纳米Si3N4与玻璃纤维混杂能使复合材料耐磨损性提高,以3%Si3N4与玻璃纤维混杂填充耐磨性最佳;而纳米SiC与玻璃纤维混杂会导致复合材料的磨损量增大,纳米SiC或Si3N4与玻璃纤维混杂填充PA6复合材料的摩擦系数都低于尼龙材料。  相似文献   

8.
玻璃纤维增强阴离子开环聚合尼龙6(APA6)复合材料因其优良性能被广泛应用于汽车、船舶、轨道交通、机械制造等领域,其主要包括短玻璃纤维增强APA6复合材料、连续玻璃纤维增强APA6复合材料和填料改性玻璃纤维增强APA6复合材料。本文综述了玻璃纤维增强APA6复合材料的研究及应用进展,主要介绍三类玻璃纤维增强APA6复合材料的成型工艺、力学性能和相关产业的应用情况。  相似文献   

9.
采用MM-200型摩擦磨损试验机对干摩擦条件下纳米SiO2与玻璃纤维混杂填充聚酰胺6(PA6)复合材料与45#钢对摩时的摩擦磨损性能进行了研究。结果表明,纳米SiO2和玻璃纤维混杂可以显著改善PA6复合材料的摩擦磨损性能,以5 %的SiO2和20 %的玻璃纤维增强PA6的耐磨减摩性最好。扫描电镜分析表明,纯PA6的磨损以黏着和犁削为主。当载荷较低时,复合材料的磨损机制主要表现为不同程度的磨粒磨损,但当载荷较高时,复合材料的磨损机制主要表现为不同程度的疲劳磨损。  相似文献   

10.
通过螺杆挤出法制备了玻璃纤维增强聚酰胺6/蒙脱土复合材料,利用电子万能试验机对复合材料的力学性能进行了测量,并对实验结果进行了分析。结果表明,随着玻璃纤维含量的增加,聚酰胺6/蒙脱土/玻璃纤维复合材料的拉伸强度和冲击强度相应地增大,且长度为12mm的玻璃纤维增强的复合材料比6mm玻璃纤维增强的复合材料高;当玻璃纤维含量为10%(质量分数,下同)时,12mm玻璃纤维增强的复合材料的拉伸强度和冲击强度分别比聚酰胺6/蒙脱土复合材料提高了17.4%和84.1%。  相似文献   

11.
一种无卤阻燃纳米增强尼龙复合材料及其制备方法以尼龙6、尼龙66、尼龙6和66的共聚物主要原料,在双螺杆挤出机中与蜜胺聚磷酸盐、次磷酸盐、三聚氰胺氰尿酸盐、玻璃纤维、纳米高  相似文献   

12.
《玻璃纤维》2006,(3):30-30
一种低烟阻燃型玻璃纤维增强聚对苯二甲酸丁二酯(下称PBT)复合及一种高分子复合材料及其制备方法, 一种低烟阻燃玻璃纤维增强复合材料,其组成为:PBT45%~75%、十溴连苯醚8%-15%、三氧化二锑3%~5%、聚四氟乙烯0.2%-1%、纳米氧化锌1%~5%、纳米碳酸钙1%~5%、增韧相容剂、抗氧剂0.2%~1%以及玻  相似文献   

13.
为了提升地下工程用纤维增强复合材料的力学性能,采用熔融共混方法制备多种玻璃纤维添加量的纤维增强复合材料,研究了玻璃纤维添加量对复合材料密度和灰分、熔融和结晶以及力学性能的影响。结果表明,添加玻璃纤维制备得到的PA66/GF复合材料的密度和灰分都大于PA66,且随着玻璃纤维添加量的增大,PA66/GF复合材料的密度和灰分都逐渐增大;纤维增强尼龙复合材料中添加20%~30%的玻璃纤维不会显著改变复合材料的熔点,但是结晶温度有所提升、结晶时间明显缩短。研究结果将有助于高性能地下工程用纤维增强复合材料的开发与应用。  相似文献   

14.
龚维  何颖  张纯  朱建华  何力 《塑料科技》2012,40(5):44-47
采用化学发泡注塑成型的方法制备了微发泡聚丙烯/玻璃纤维(PP/GF)复合材料;结合成核理论和玻纤增强机理,研究了发泡质量对微发泡PP/GF复合材料力学性能的影响。结果表明:在PP/GF复合材料中添加5.0%纳米SiO2后,纳米SiO2对PP与GF的相容性并无太大影响,微孔发泡PP/GF复合材料的拉伸强度和冲击强度得到较大提高。  相似文献   

15.
5528氰酸酯树脂基玻璃纤维增强复合材料性能研究   总被引:4,自引:0,他引:4  
本文对新型的5528改性氰酸酯树脂基玻璃纤维增强复合材料的耐热性能、力学性能、耐湿热性能、介电性能进行研究,结果表明:5528氰酸酯树脂基玻璃纤维增强复合材料具有良好的力学性能和介电性能。其中石英玻璃纤维增强复合材料的介电常数为3.40,介电损耗正切值为0.00393,并且对频率显示出优秀的稳定性;而高强玻璃纤维增强复合材料的介电损耗正切值为0.00925,远远优于环氧和双马树脂基复合材料。5528氰酸酯基玻璃纤维复合材料适合高性能透波材料或高频印刷电路板应用。  相似文献   

16.
玻璃纤维增强聚丙烯的性能研究   总被引:1,自引:0,他引:1  
通过制备长玻璃纤维与短玻璃纤维增强聚丙烯复合材料,对比研究了在一定温度下的不同复合材料的弯曲性能与热性能。结果表明,在相同玻璃纤维含量下,长玻璃纤维增强PP的弯曲性能与热变形温度均高于短纤维增强聚丙烯复合材料。  相似文献   

17.
对聚氯乙烯(PVC)、高密度聚乙烯(HDPE)、聚丙烯(PP)三种通用树脂进行玻璃纤维增强、无机纳米粒子改性制备热塑性树脂基纳米复合材料,可在复合材料与树脂成本基本持平的条件下,使复合材料的力学性能比基体树脂有较大提高,接近甚至达到了工程塑料的水平,为通用塑料工程化探索一行之有效的技术途径。  相似文献   

18.
玻璃纤维增强热塑性复合材料的增强方式及纤维长度控制   总被引:14,自引:0,他引:14  
本文综述了玻璃纤维长度对力学性能的影响 ;玻璃纤维长度的表征方法 ;挤出和注塑过程中玻璃纤维的断裂 ;并叙述了玻璃纤维增强热塑性复合材料的进展 ,提出了玻璃纤维增强热塑性复合材料发展的方向  相似文献   

19.
采用碱催化阴离子聚合反应制备玻璃纤维粉煤灰增强尼龙复合材料.研究了玻璃纤维表面偶联处理、粉煤灰的活化偶联处理以及两者加入时间和两者配比对复合材料力学性能和摩擦性的影响.结果表明:将经偶联处理的玻璃纤维、粉煤灰与催化剂一起加人己内酰胺单体,能够制备出性能良好的玻璃纤维粉煤灰增强尼龙复合材料;采用玻璃纤维和粉煤灰同时增强尼龙,两者表现出良好的增强效应;当玻璃纤维质量分数为30%、粉煤灰质量分数为10%时,所得的尼龙复合材料具有较好的力学性能.  相似文献   

20.
综述了玻璃纤维的质量分数、长度、界面结合及加工工艺等对玻璃纤维增强聚丙烯复合材料性能的影响;展望了玻璃纤维增强聚丙烯复合材料的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号