首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 182 毫秒
1.
李劭  王昊  王曼曼 《当代化工》2014,(5):858-862
C5/C6烷烃异构化技术可以使轻石脑油的辛烷值提高约20个单位,其产品异构化油是一种高辛烷值且环境友好的汽油调和组份。国外的C5/C6异构化技术主要有UOP的Penex、Axens的Isomerization等。国内的技术有石科院的RISO和华东理工大学的技术等。通过对国内外的主要C5/C6异构化技术进行对比分析,为国内的异构化技术发展提出建议。  相似文献   

2.
王忠  杨洋  杨燕  赵悦  苏国平 《广东化工》2016,(18):119-121
清洁汽油的生产需要低硫、低烯烃并且辛烷值较高的调和组分,轻石脑油异构化油不含硫、不含烯烃、不含芳烃,采用不同的轻石脑油异构化技术和加工流程可以使轻石脑油辛烷值(RON)提高10~20。国外的C5/C6异构化技术主要有UOP的Penex、Axens的Isomerization等。国内的技术有石科院的RISO和华东理工大学的技术等。通过对国内外的主要C5/C6异构化技术进行对比分析,为国内的异构化技术发展提出建议。  相似文献   

3.
烷烃异构化是提高汽油辛烷值的重要方法。叙述了C5C6烷烃异构化催化剂的研究现状,介绍双功能催化剂、超强固体酸催化剂以及离子液体催化剂,幵阐述不同金属活性组分、助剂添加剂、载体对异构化催化剂性能的影响。最后对异构化催化剂的収展趋势进行展望,以期为新型C5C6异构化催化剂的研収及应用提供新的思路和借鉴。  相似文献   

4.
介绍国内首套40万t·a-1 C5/C6低温异构化装置的工艺技术特点及标定情况。首套引进C5/C6低温异构化装置成功运行,使反应产物辛烷值提高15个单位,对汽油质量升级具有重要意义。  相似文献   

5.
我国C/C烷烃异构化催化剂研究进展   总被引:7,自引:1,他引:6  
20世纪80年代以来,由于环保的要求,C/C烷烃异构化工艺在国外得到迅速发展,并已成为生产高辛烷值汽油组分的重要工艺。我国目前尚无轻烃异构化装置,但国内许多部门进行了C/C异构化催化剂的研究,为C/C异构化工业生产做好了准备。  相似文献   

6.
车用汽油已经进入国Ⅵ阶段,而C_5/C_6异构化技术是汽油国Ⅵ产品升级的重要措施。K厂汽油国Ⅵ产品升级新建一套C_5/C_6异构化装置,通对过配套工程、原料、产品辛烷值、经济效益和市场需求等多方面综合分析,选择脱异戊烷加一次通过的异构化流程。  相似文献   

7.
介绍了目前工业上应用的C5/C6烷烃异构化技术与催化剂,对进一步提高异构化油辛烷值水平的循环流程进行了介绍和对比,用户可以根据进料组成以及辛烷值目标选择适宜的异构化技术和循环流程。  相似文献   

8.
国内外高品质汽油组分生产技术进展   总被引:3,自引:0,他引:3  
随着人们环保意识的日益增强,对汽油的燃烧质量提出了更高的要求,基于21世纪世界各国实施可持续发展战略的实际情况出发,对高品质汽油组分生产技术的研究就显得尤为重要,无铅、高辛烷值,低烃分压,低烯烃,低芳烃和富含氧的新配方汽油的生产是现代化汽油生产的发展趋势。目前,常用的高辛烷值汽油调和组分主要有烷基化油,叠合油,异构化油以及甲基叔丁基醚等,针对近几年高辛烷值汽油调和组分生产的发展动态,着重概述了国内外醚化技术,异构化技术,烷基化技术的最新进展,此外,也对降低汽油中苯含量以生产清洁燃料的最新技术进展进行了阐述。  相似文献   

9.
异构化技术及应用   总被引:1,自引:0,他引:1  
张冲 《辽宁化工》2009,38(9):674-677
采用异构化技术提高汽油辛烷值将成为一种新的有效手段。在临氢的条件下,C5、C6构烷烃与含铂(钯)的强酸性催化剂接触将发生结构异构化反应,可将轻质石脑油的辛烷值可提高10个单位以上。利用流程模拟设计,对异构化装置的设计进行了探讨,同时结合炼厂现有闲置重整装置的特点,提出了重整装置改建成异构化装置的方案。  相似文献   

10.
延长石油(集团)有限责任公司炼化公司具有C4~C6轻烃56万t/a的资源,结合国内外C4~C6轻烃利用技术,设计了方案I SUPERFLEX-SCORE组合工艺和方案IISUPERFLEX-现有气分装置组合工艺两个技术方案。研究结果表明:方案I可产丙烯19.88万t/a,乙烯14.27万t/a,高辛烷值汽油12.10万t/a;方案Ⅱ可产丙烯13.90万t/a,稀乙烯10.97万t/a,高辛烷值汽油8.84万t/a。经济分析表明,方案Ⅱ在投资、利税率、回收期等方面均优于方案I。如果需更多的丙烯,则方案Ⅱ也是一种理想的选择。  相似文献   

11.
轻质烷烃异构化技术是提高汽油辛烷值的重要手段,是实现汽油清洁化生产的理想选择。异构化反应是微放热反应,低温更有利于异构化反应的进行,而轻质烷烃异构化技术应用生产的前提是获得高效、稳定的催化剂。综述当前工业应用的低温型异构化催化剂、中温型异构化催化剂和固体超强酸催化剂的发展现状,指出异构化催化剂今后的研究方向。低温型催化剂为贵金属卤化物无定型催化剂,具有温度低和活性高的特点,但腐蚀性强,其应用受到限制。中温型异构化催化剂多为贵金属负载分子筛型双功能催化剂,稳定性高,但反应温度高,单程异构转化率低。固体超强酸催化剂多为将贵金属负载到固体超强酸上制备得到,活性高,反应温度低,环境友好,具有较好的发展前景。  相似文献   

12.
轻质正构烷烃异构化是油田液态烃加工利用的重要手段,也是炼厂提高汽油轻质馏分辛烷值的重要方法。为适应环境保护的要求,异构化工艺将发挥越来越重要的作用。因此,受到人们的普遍重视。本文从工艺和催化剂两方面,综述了近年来研究工作的进展,分析了异构化技术未来的发展趋势。  相似文献   

13.
MOLECULAR MODELING AND OPTIMIZATION FOR CATALYTIC REFORMING   总被引:2,自引:0,他引:2  
In this paper, molecular modeling and optimization for the naphtha catalytic reforming process is studied. The catalytic reforming process is for producing high octane number gasoline by reforming reactions in three sequencing fixed bed reactors. Feed naphtha coming from an atmospheric distillation unit consisted of molecules from C5 to C10 including paraffin, iso-paraffin, naphthene, and aromatic. The molecular reaction network consisted of paraffin cracking, naphthene side-chain cracking, aromatic side-chain cracking, ring opening, ring closure, paraffin isomerization, dehydrogenation, and hydrogenation. A molecular model for catalytic reforming was built. On the basis of the simulation model, a process optimization was performed for feed temperature and pressure under constraints such as benzene content, aromatic content, and RON (Research Octane Number) limitations. High RON was contrasted to low benzene and aromatic content requirements. By optimizing and controlling the reaction pathway, we can obtain a final product with the highest profit and appropriate benzene and aromatic contents and RON value. This example shows significant benefits from applying molecular modeling to optimization in the process level. Since gasoline production is related to many different processes such as reforming, FCC, isomerization, alkylation, and so on, more benefits can be obtained by applying molecular modeling to plant-wide optimization.  相似文献   

14.
In this paper, molecular modeling and optimization for the naphtha catalytic reforming process is studied. The catalytic reforming process is for producing high octane number gasoline by reforming reactions in three sequencing fixed bed reactors. Feed naphtha coming from an atmospheric distillation unit consisted of molecules from C5 to C10 including paraffin, iso-paraffin, naphthene, and aromatic. The molecular reaction network consisted of paraffin cracking, naphthene side-chain cracking, aromatic side-chain cracking, ring opening, ring closure, paraffin isomerization, dehydrogenation, and hydrogenation. A molecular model for catalytic reforming was built. On the basis of the simulation model, a process optimization was performed for feed temperature and pressure under constraints such as benzene content, aromatic content, and RON (Research Octane Number) limitations. High RON was contrasted to low benzene and aromatic content requirements. By optimizing and controlling the reaction pathway, we can obtain a final product with the highest profit and appropriate benzene and aromatic contents and RON value. This example shows significant benefits from applying molecular modeling to optimization in the process level. Since gasoline production is related to many different processes such as reforming, FCC, isomerization, alkylation, and so on, more benefits can be obtained by applying molecular modeling to plant-wide optimization.  相似文献   

15.
Olefins in the cracked naphtha can be transformed into aromatics and isoparaffin to reduce the olefin content as well as to improve the octane number. In this work, Ni/HZSM-5 bifunctional catalyst was prepared and was characterized by nitrogen adsorption, FT-IR analysis with adsorbed pyridine as well as by X-ray powder diffraction analysis. The activity of the catalyst was investigated with the transformation of 1-hexene. The experimental results show that the main reactions occurring over Ni/HZSM-5 at relatively low temperature are cracking and isomerization of 1-hexene, which results in the high concentration of olefin in the hydrotreated product. The double-bond isomerization of 1-hexene is dominant at low temperature (<220 °C) while the skeletal isomerization is elevated at high temperature, and the aromatization activity of the Ni/HZSM-5 catalyst is promoted by high temperature. The sulfided Ni/HZSM-5 catalyst shows higher aromatization activity than the reduced one and the zeolite supported Ni catalysts show comparatively better stability than that without metal components.  相似文献   

16.
介绍了国外某炼厂C5/C6低温异构化装置的工艺技术特点及开工物料标定状况,本套异构化装置的成功运行,将原料辛烷值提高十几个单位,满足了炼厂生产欧IV、欧V标准的汽油的要求,对于炼厂的生产发展、提高炼厂效益具有十分重要的意义。  相似文献   

17.
费托蜡主要由链烷烃组成,不含硫、氮等杂原子,是生产清洁汽油的优质原料。由于缺少芳烃和环烷烃,费托蜡催化裂化过程需要强化异构化、芳构化反应以实现降低汽油馏分烯烃含量、保持高辛烷值的目标。对费托蜡为原料的催化裂化反应体系进行热力学分析,重点计算了不同温度下生成汽油馏分主要烃类的反应焓变和反应平衡常数。研究结果表明,以大分子链烷烃为主的费托蜡,其裂化吸热反应焓变约为80 kJ/mol,反应平衡常数随温度的升高而增大,高温有利于一次裂化反应。对于异构化反应,主要是大分子链烷烃裂化为烯烃,再由烯烃分子转化为异构烷烃,因此对于异构化反应,可以通过优化反应器促进汽油烯烃的转化。在考察温度范围内,烯烃环化反应平衡常数随温度升高而减小,环烷烃脱氢芳构化反应平衡常数随温度升高而增大,所以适宜的反应温度是制约进一步增加汽油中芳烃的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号