首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Here we report the cDNA sequence of human Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase. The cDNA was isolated from a human placental cDNA library by screening with a 150bp probe generated by PCR using degenerate primers based on the sequences found in the sialyl motif. Comparative analysis of this cDNA with the rat liver alpha 2,3-sialyltransferase sequence indicates 91% nucleotide similarity between the two sequence in the predicted coding region. On the amino acid level, the degree of conservation is 97%. Surprisingly, Northern analysis indicated that the gene is expressed at low levels in human placenta but is abundantly expressed in skeletal muscle and fetal tissues.  相似文献   

3.
4.
Galactosyltransferase, sialyltransferase, and fucosyltransferase were used to create a panel of complex oligosaccharides that possess multiple terminal sialyl-Le(x) (NeuAc alpha 2-3Gal[Fuc alpha 1-3] beta 1-4GlcNAc) and GalNAc-Le(x) (GalNAc[Fuc alpha 1-3]beta 1-4GlcNAc). The enzymatic synthesis of tyrosinamide biantennary, triantennary, and tetraantennary N-linked oligosaccharides bearing multiple terminal sialyl-Le(x) was accomplished on the 0.5 mumol scale and the purified products were characterized by electrospray MS and 1H NMR. Likewise, biantennary and triantennary tyrosinamide oligosaccharides bearing multiple terminal GalNAc-Le(x) determinants were synthesized and similarly characterized. The transfer kinetics of human milk alpha 3/4-fucosyltransferase were compared for biantennary oligosaccharide acceptor substrates possessing Gal beta 1-4GlcNAc, GalNAc beta 1-4GlcNAc, and NeuAc alpha 2-3Gal beta 1-4GlcNAc which established NeuAc alpha 2-3Gal beta 1-4GlcNAc as the most efficient acceptor substrate. The resulting complex oligosaccharides were chemically tethered through the tyrosinamide aglycone to the surface of liposomes containing phosphatidylthioethanol, resulting in the generation of glycoliposomes probe which will be useful to study relationships between binding affinity and the micro- and macro-clustering of selectin ligand.  相似文献   

5.
6.
7.
A second NeuAc(alpha2,6)Gal/GalNAc binding type 2 ribosome-inactivating protein (RIP), called SNAI' has been isolated from elderberry (Sambucus nigra) bark. SNAI' is a minor bark protein which closely resembles the previously described major Neu5Ac(alpha2,6)Gal/GalNAc binding type 2 RIP called SNAI with respect to its carbohydrate-binding specificity and ribosome-inactivating activity but has a different molecular structure. Molecular cloning revealed that the deduced amino acid sequence of SNAI' is highly similar to that of SNAI and that the difference in molecular structure between both proteins relies on a single cysteine residue present in the B chain of SNAI but absent from SNAI'. The isolation of SNAI' not only identifies a minor bark protein as a type 2 RIP but also further emphasizes the complexity of the type 2 RIP/lectin mixture present in the bark of elderberry.  相似文献   

8.
The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in Gal beta 1, 4GlcNAc beta 1,6(Gal beta 1,3) GalNAc alpha-O-Bn, the enzyme had a higher affinity ( > 3-fold) for the Gal linked to GlcNAc. (q) With respect to Gal beta 1,- 3GlcNAc beta-O-Bn (3.0 mM), fetuin triantennary asialo glycopeptide (2.4 mM), bovine IgG diantennary glycopeptide (2.8 mM), asialo Cowper's gland mucin (0.06 mM), and the acrylamide copolymers (0.125 mM each) containing Gal beta 1,3GlcNAc beta-, Gal beta 1,3(6-sulfo)GlcNAc beta-, Gal beta 1,3GalNAc alpha-, Gal beta 1,3Gal beta-, or Gal alpha 1,3Gal beta- units were 153.6%, 43.0%, 6.2%, 52.5%, 94.9%, 14.7%, 23.6%, and 15.6% active, respectively. (r) Fucosylation by alpha 1,2-L-FT of the galactosyl residue which occurs on the antennary structure of the bovine IgG glycopeptide was adversely affected by the presence of an alpha 1,6-L-fucosyl residue located on the distant glucosaminyl residue that is directly attached to the asparagine of the protein backbone. This became evident from the 4-fold activity of alpha 1,2-L-FT toward bovine IgG glycopeptide after approximately 5% removal of alpha 1,6-linked Fuo.  相似文献   

9.
A cDNA corresponding to the beta subunit of the human translocon-associated protein was cloned and sequenced. The polypeptide is 183 amino acids long and 96% homologous to its canine counterpart. Both polypeptides contain a cleavable signal sequence, an NH2-terminal domain extruding in the endoplasmic reticulum lumen, a transmembrane domain and a COOH-terminal domain located in the cytoplasm.  相似文献   

10.
Protein geranylgeranyltransferase type-I (GGTase-I) transfers a geranylgeranyl group to the cysteine residue of candidate proteins containing a carboxyl-terminal CAAX (C, cysteine; A, aliphatic amino acid; X, any amino acid) motif in which the "X" residue is leucine. The enzyme is composed of a 48-kilodalton alpha subunit and a 43-kilodalton beta subunit. Peptides isolated from the alpha subunit of GGTase-I were shown to be identical with the alpha subunit of a related enzyme, protein farnesyltransferase. Overlapping cDNA clones containing the complete coding sequence for the beta subunit of GGTase-I were obtained from rat and human cDNA libraries. The cDNA clones from both species each predicted a protein of 377 amino acids with molecular masses of 42.4 kilodaltons (human) and 42.5 kilodaltons (rat). Amino acid sequence comparison suggests that the protein encoded by the Saccharomyces cerevisiae gene CDC43 is the yeast counterpart of the mammalian GGTase-I beta subunit. Co-expression of the GGTase-I beta subunit cDNA together with the alpha subunit of protein farnesyltransferase in Escherichia coli produced recombinant GGTase-I with electrophoretic and enzymatic properties indistinguishable from native GGTase-I.  相似文献   

11.
The N-linked oligosaccharides of frog (Rana pipiens) rhodopsin were analysed by sequential exoglycosidase digestion and gel filtration chromatography, following reductive tritiation. In addition, selected tryptic glycopeptides obtained from frog retinal rod outer segment membranes were examined by electrospray mass spectrometry (ES-MS), fast atom bombardment mass spectrometry (FAB-MS), amino acid sequence and composition analysis, and carbohydrate composition analysis. The amino acid sequence data demonstrated that the glycopeptides were derived from rhodopsin and confirmed the presence of two N-glycosylation sites, at residues Asn2 and Asn15. The predominant glycan (approximately 60% of total) had the structure GlcNAc beta 1-2Man alpha 1-3(Man alpha 1-6) Man beta 1-4GlcNAc beta 1-4GlcNAc-(Asn), with the remaining structures containing 1-3 additional hexose residues, as reported previously for bovine rhodopsin. Unlike bovine rhodopsin, however, a sizable fraction of the total glycans of frog rhodopsin also contained sialic acid (NeuAc), with the sialylated oligosaccharides being present exclusively at the Asn2 site. FAB-MS analysis of oligosaccharides released from the Asn2 site gave, among other signals, an abundant quasimolecular ion corresponding to a glycan of composition NeuAc1Hex6HexNAc3 (where Hex is hexose and HexNAc is N-acetylhexosamine), consistent with a hybrid structure. The potential biological implications of these results are discussed in the context of rod outer segment membrane renewal.  相似文献   

12.
Five oligosaccharide alpha1-phosphates and one sulfated glycopeptide have been isolated from the hemofiltrate of one patient with end-stage renal disease. Isolation of these compounds has been achieved using reverse osmosis, ion-exchange and size-exclusion chromatography and high performance liquid chromatography. The structures were predominantly elucidated by one- and two-dimensional 1H and 31P NMR spectroscopy. The chemical structures were determined to be: 1 NeuAc alpha2-3Gal alpha1-OPO3H2; 2 NeuAc alpha2-6Galbeta1-4GlcNAc alpha1-OPO3H2; 3 NeuAc alpha2-3Galbeta1-3GalNAc alpha1-OPO3H2; 4 NeuAc alpha2-3Galbeta1-3[NeuAc alpha2-6]GalNAc alpha1-OPO3H2 (proposed structure); 5 Fuc alpha1-2Galbeta1-4[Fuc alpha1-3]GlcNAc alpha1-OPO3H2; 6 HOSO3-4Fuc alpha1-6GlcNAcbeta1-NAsn. While 2 and 3 have been previously characterized as compounds of urine and hemofiltrate, the oligosaccharide alpha1-phosphates 1, 4, and 5 could be isolated--to our knowledge--for the first time from biological material. Compound 6 is the first glycopeptide reported to contain a 4-sulfated fucose residue.  相似文献   

13.
A novel trisialoganglioside has been isolated from normal adult human brain in a yield of 0.6% of the total gangkioside. By graded neuraminidase treatment, mild acid hydrolysis and periodate oxidation analysis, the ganglioside was identified as GT1a having the following structure: NeuAc(alpha, 2-8)NeuAc(alpha, 2-3)Gal(beta, 1-3)GalNAc(beta, 1-4) [NeuAc(alpha, 2-3)]Gal(beta, 1-4)Glc(1-1)ceramide.  相似文献   

14.
We expressed the NH2-terminal domain of the multidomain, multifunctional enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), using a baculovirus expression system in insect cells. Expression of the 203-amino acid NH2-terminal domain (residues 1-203), which is 24-30% identical to a group of glycinamide ribonucleotide transformylases (EC 2.1.2.2), resulted in the appearance of insoluble recombinant protein apparently due to incorrect folding. The longer NH2-terminal recombinant protein (residues 1-310), which shares 32% identity with Escherichia coli L-methionyl-tRNA formyltransferase (EC 2.1.2.9), was expressed as a soluble protein. During expression, this protein was released from cells to the culture medium and was purified from the culture medium by 5-formyltetrahydrofolate-Sepharose affinity chromatography followed by chromatography on a Mono-Q column. We found that the purified NH2-terminal domain bears a folate binding site, possesses 10-formyltetrahydrofolate hydrolase activity, and exists as a monomer. Titration of tryptophan fluorescence showed that native FDH bound both the substrate of the reaction, 10-formyl-5, 8-dideazafolate, and the product of the reaction, 5,8-dideazafolate, with the same affinities as its NH2-terminal domain did and that both proteins bound the substrate with a 50-fold higher affinity than the product. Neither the NH2-terminal domain nor its mixture with the previously purified COOH-terminal domain had 10-formyltetrahydrofolate dehydrogenase activity. Formation of complexes between the COOH- and NH2-terminal domains also was not observed. We conclude that the 10-formyltetrahydrofolate dehydrogenase activity of FDH is a result of the action of the aldehyde dehydrogenase catalytic center residing in the COOH-terminal domain on the substrate bound in the NH2-terminal domain and that the intermediate domain is necessary to bring the two functional domains together in the correct orientation.  相似文献   

15.
16.
Porcine spleen DNase II, a lysosomal acid hydrolase, is a noncovalently linked alpha.beta heterodimer (Liao, T.-H. (1985) J. Biol. Chem. 260, 10708-10713). The alpha subunit, after disulfide cleavage, yields two chains, alpha1 and alpha2. The complete amino acid sequences of the alpha1, beta, and alpha2 chains were elucidated by protein sequencing, and the pairings of one interchain disulfide between alpha1 and alpha2 and of three intrachain disulfides in alpha2 were assigned. Six carbohydrate attachment sites, two in beta and four in alpha2, were detected by sugar analyses. The cDNA of DNase II was amplified using primers synthesized on the basis of the amino acid sequences determined. The amplified fragments shown to be a cDNA sequence of 1,292 bases. This cDNA sequence has an open reading frame encoding a 364-amino acid polypeptide containing a putative transmembrane peptide at the NH2-end, two small connecting peptides in the middle, and a peptide at the COOH terminus. These are evidently removed to form mature DNase II. Thus, all three chains in the sequence alpha1, beta, and alpha2 are coded by the same cDNA. When Chinese hamster ovary cells were transfected with a cloned plasmid with an inserted cDNA fragment encoding the entire reading frame, the expressed protein was released into the growth medium as an active form of DNase II.  相似文献   

17.
The native structures of the Asn-linked oligosaccharides and the O-glycans at Ser126 of human erythropoietin expressed from recombinant BHK cells have been elucidated. Enzymatically released N-glycans were studied by methylation analyses, fast-atom-bombardment mass spectrometry as well as one- and two-dimensional 1H-NMR spectrometry at 600 MHz. Many (82.7%) were found to be tetraantennary N-acetyllactosamine-type (22.8% with one, 3.6% with two and 0.4% with three N-acetyllactosamine repeats) being tetrasialylated (41%), trisialylated (29.6%) and disialylated (12.2%). A few (9.7%; 4.1% 2,4-branched, 5.6%, 2,6-branched) of the chains were triantennary (5.4% trisialyl, 4.3% disialyl) and 4.6% were of the disialyl diantennary type. Almost all of the innermost GlcNAc residues were alpha 1-6 fucosylated and NeuAc was exclusively alpha 2-3 linked to Gal beta 1-4GlcNAc-R; 60% of the protein was found to be O-glycosylated at Ser126; structures were monosialylated (70%) or disialylated (30%) forms of the Gal beta 1-3GalNAc core type. Glycosylation patterns at individual Asn-Xaa-Thr/Ser sites were determined by analytical high-pH anion-exchange chromatography with pulsed amperometric detection. Only tetraantennary chains with 0-3 N-acetyllactosamine repeats were detected at Asn38 and Asn83, while almost all of the di- and triantennary oligosaccharides were attached to Asn24. Batch analysis of different preparations of recombinant erythropoietin revealed the high reproducibility of the production procedure. Structures containing terminal GalNAc-GlcNAc were detected in small amounts in a few batches.  相似文献   

18.
19.
beta-Galactosidase from bovine testes was used in a one pot reaction together with a recombinant beta-1,6-GlcNAc transferase for the synthesis of GlcNAc(beta 1-6)GalNAc(alpha 1-OBn) (core 6-Bn). The galactosidase, which reversibly links galactose via a (beta 1-3) linkage to N-acetylgalactosamine, provides the substrate for the GlcNAc transferase in situ. The synthesis was carried out with a yield > 90%.  相似文献   

20.
Argingipain, so termed due to its peptide cleavage specificity at arginine residue, is a unique extracellular cysteine proteinase produced by the anaerobic rod Porphyromonas gingivalis, which is known as a major pathogenic factor of the progressive periodontal disease (T. Kadowaki, M. Yoneda, K. Okamoto, K. Maeda, and K. Yamamoto (1994) J. Biol. Chem. 269, 21371-21378). The catalytic specificity and functional importance of this enzyme prompted us to elucidate its structural features. A DNA fragment for argingipain was selectively amplified by polymerase chain reaction using mixed oligonucleotide primers designed from the NH2-terminal amino acid sequence of the purified enzyme. Although the extracellular mature enzyme was shown to have an apparent molecular mass of 44 kDa in gels, the nucleotide sequence of the isolated gene revealed a single gene coding for a 109-kDa precursor of argingipain. The deduced amino acid sequence exhibited no significant similarity to the sequences of representative members of the cysteine protease family. The precursor contained four functional domains: the NH2-terminal signal peptide required for the inner membrane transport; the NH2-terminal prosequence, which is assumed to stabilize the precursor structure; the proteinase domain; and the COOH-terminal hemagglutinin domain, which appears to be essential for extracellular secretion of the proteinase domain. Experiments involving the addition of the argingipain inhibitors to the culture medium of P. gingivalis suggested that the maturation of argingipain occurs intracellularly via an autocatalytic cleavage of the pro-argingipain propeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号