首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
介绍了用高分子反应法在固态条件下合成高阳离子度阳离子聚合物NCP的方法,确定了其最佳反应条件,测定了聚合物阳离子度和反应效率.采用L9(34)正交试验法得出合成NCP的最佳反应条件为:聚合物与阳离子化试剂质量比为11:3;催化剂用量为1.072%,反应时间为2.5 h;反应温度为80℃.实验结果表明,在反应体系中加入催化剂和少量有机或无机溶剂可显著提高反应速率和效率;使用少量润湿剂,可最大限度地限制副反应,造成反应部位的局部浓度高,提高反应效率.阳离子聚合物NCP可作为增粘降滤失剂用于配制正电性钻井液,效果优良,且耐温性能良好,同时基于阳离子与阴离子聚合物在溶液中生成凝胶状沉淀物的特性,NCP还可用于解决注聚区块生产井产出水中含高浓度聚合物的问题.  相似文献   

2.
多功能聚醚多元醇防塌剂SYP-1的性能评价及现场应用   总被引:9,自引:0,他引:9  
新型多功能钻井液用防塌剂SYP-1是以低分子量醇为起始剂,由环氧乙烷(简称EO)和环氧丙烷(简称PO)共聚而成的聚醚型多元醇防塌剂,为白色或淡黄色粘稠液.室内试验对聚醚多元醇防塌剂SYP-1的性能进行了评价,结果表明,聚醚多元醇防塌剂SYP-1具有很强的抑制作用和良好的润滑性能,能显著降低钻井液摩擦系数,提高极压膜强度,对钻井液流变性影响小,能改善钻井液滤失性能,基本不发泡,保护油气层能力强;且无毒、易生物降解,满足环境保护要求;荧光级别小于3级,是一种适用于深井、定向井和水平井的高性能防塌剂.分析了多功能聚醚多元醇防塌剂SYP-1的作用机理,介绍了其现场应用情况.该防塌剂已在胜利油田、塔里木油田及吐哈油田推广应用,很好地解决了井壁坍塌和钻井液润滑性问题.  相似文献   

3.
反相乳液聚合合成AM/DMDAAC阳离子共聚物   总被引:9,自引:1,他引:8  
以丙烯酰胺(AM)、阳离子单体二甲基二烯丙基氯化铵(DMDAAC)为原料,用反相乳液聚合法合成了AM/DMDAAC阳离子共聚物,利用单因素实验分别研究了引发剂种类、引发剂用量、单体用量、nAM∶nDMDAAC、反应时间、反应温度等合成条件对共聚物的特性粘数和阳离子度的影响。确定出了最佳反应条件为:nAM∶nDMDAAC=2∶1,单体总质量分数30%,反应温度45℃,pH=7,反应时间5~6h。  相似文献   

4.
阳离子絮凝剂P(DMC-AM)的合成及其絮凝性能   总被引:1,自引:0,他引:1  
采用氧化还原剂和偶氮化合物组成的复合引发体系,合成了阳离子絮凝剂 P(DMC-AM)。探讨了反应体系 pH 值、单体浓度、阳离子度、反应时间、烘干温度等因素对产物特性粘数的影响。较佳工艺条件为:反应体系 pH=4.5、单体浓度40%、阳离子度40%、反应时间2.5 h、烘干温度60℃,产物的特性粘数为13.4 dL/g。在污水处理实验中,经其处理过的污泥的透光率、脱水率等指标均与国外同类产品的絮凝效果相当。  相似文献   

5.
阳离子淀粉可广泛用作纸张施胶剂、纺织浆料、低价絮凝剂、钻井降失水剂、粘合剂等,近年来孤岛油田作为堵剂用于油井封堵聚合物、降水、增油见到了明显效果。阳离子淀粉堵剂(NCP)的合成方法:先由三甲胺与环氧氯丙烷合成阳离子试剂,然后再与淀粉反应生成阳离子淀粉。成品为白色粉末,含氮量0.3%,pH值为6~8,糊化温度55℃。  相似文献   

6.
基于钻井工程中安全快速钻进及油气层保护对钻井液的严格要求,开发出了改性多元醇防塌剂,在此基础上通过优选其他处理剂和配方优化研制出了一种新型醇类钻井液。改性多元醇防塌剂抑制性强,润滑性好,利于环保,而且具有较好保护油气层效果。改性多元醇的防塌作用机理表现为:(1)吸水机理,多元醇的强吸水性抑制水化物的形成,降低了泥页岩中粘土的吸水趋势;(2)渗透机理,通过降低钻井液滤液的化学活性,阻止水分子向泥页岩内渗透而稳定井壁;(3)竞争吸附机理,通过与水分子争抢页岩中粘土矿物上的吸附位置,阻止水分子与粘土反应形成可使粘土膨胀分散的有机结构;(4)成膜机理,通过吸附交联、粘附形成连续致密 膜,该膜渗透率特别低,对井壁起固结作用。

  相似文献   

7.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)为单体,根据自由基聚合反应原理,合成出增粘提切剂YF-01。考察了单体质量比、反应温度、引发剂用量、单体含量、反应时间等对其表观粘度和静切力的影响。结果表明,在单体质量比(AM:AMPS:DMDAAC)7:4:1,单体禽量40%,引发剂用量0.15%,反应温度45℃,反应时间75rain最佳条件下,合成的增粘提切剂YF-01产品使泥浆表观粘度由56mPa·s提高到211mPa·s,初切力由4.078Pa提高到12.365Pa,终切力由4.699Pa提高到13.897Pa。  相似文献   

8.
油田用聚合醇化学剂研究与应用   总被引:2,自引:0,他引:2  
杨小华  王中华 《油田化学》2007,24(2):171-174,192
综述了聚合醇作为油田化学荆的研发和应用。论述了聚合醇在钻井液中的性能:抑制防塌性;润滑性;消泡性;无毒环保性。讨论了在钻井液中的抑制机理:浊点效应;降低滤液渗透能力;在黏土矿物上竞争吸附;与无机盐的协同效应。介绍了7种含聚合醇的钻井液及其应用效果:甲酸盐/正电聚醇钻井液、聚合醇/正电胶聚合物钻井液、铝盐聚合醇钻井液、聚合醇饱和盐水钻井液、小阳离子/聚合醇钻井液、聚醚多元醇钻井液、充氮气多元醇防塌钻井液。还介绍了用作酸化液助排剂和蒸汽吞吐井地层预处理剂的两种聚合醇的应用情况。参23。  相似文献   

9.
采用过硫酸铵-亚硫酸钠氧化还原体系为引发剂,以2-丙烯酰胺-2-甲基丙磺酸(AMPS)和一种不饱和季铵盐阳离子为单体进行自由基水溶液聚合,生成AD-1两性离子共聚物,并用作酸液稠化剂。通过正交实验设计法,分析了单体含量与配比、反应温度、反应时间及pH对聚合反应的影响,测定了共聚物的特性粘数,评价了在酸液中的增稠性能。结果表明,在45℃、单体总质量分数为25%、阳离子单体加量13%、pH7条件下反应4h所得的共聚物性能较好,特性粘数可达272mL/g,2.5%AD-1共聚物在20%盐酸溶液中表观粘度可达27mPa·s。  相似文献   

10.
聚醚多元醇钻井液研制及应用   总被引:6,自引:3,他引:3  
以新研制的多功能聚醚多元醇SYP-1为主剂,对聚合物包被剂、防塌剂和降滤失剂进行了优选实验.在此基础上,研制了一种新型的聚醚多元醇钻井液.对聚醚多元醇钻井液的抑制性、流变性、滤失造壁性、润滑性以及对油气层的保护性能进行了室内评价实验,并分析了该钻井液的作用机理.在LN3-6H井和HD4-23H井进行的聚醚多元醇钻井液现场试验表明,在钻进过程中井壁稳定,井径规则,起、下钻畅通,井下安全,测井、下套管及固井作业顺利.室内实验和现场应用表明,聚醚多元醇钻井液具有优良的防塌性和润滑性,能有效地抑制岩屑分散,起到稳定井壁和保护油气层的作用,满足复杂地质条件下钻井的需要.  相似文献   

11.
中亚土库曼斯坦阿姆河右岸气田群为高含H_2S和CO_2的碳酸盐岩气藏,单井产量高,井口设备均出现了不同程度的腐蚀。初步分析认为其原因是生产过程中仅考虑酸性介质对气井井口的化学腐蚀,而没有考虑气体流速对井口的冲蚀作用,极大地影响了气田的安全生产。为此,通过对节流阀上下游阀道、法兰面均出现明显坑状腐蚀的进一步分析,明确了化学腐蚀和气体冲蚀的交互作用是井口磨损的主要影响因素,气流冲刷腐蚀坑的化学腐蚀产物会加速冲蚀损害;进而借鉴冲蚀与腐蚀运行环境下的多相管流管道的磨损计算理论,计算了该运行环境下的冲蚀极限速度,得到了不同生产工况下节流阀的抗冲蚀流量;最后,根据气田生产情况,针对性地提出了按气井配产要求来选择采气树类型、节流阀通径及类型冲蚀的技术控制策略。此举为气田安全生产提供了工程技术保障。  相似文献   

12.
针对山前地区深井超深井钻井过程中套管磨损严重的问题,在分析套管磨损机理的基础上,开展了山前地区套管防磨与减磨技术研究,基于技术研究成果及应用实践,得到如下结论:1应用Power V等垂直钻井系统控制井眼轨迹,特别是上部井段的狗腿度和井斜,可明显减小侧向力和磨损量,缩短套管磨损时间;2应综合考虑套管磨损率、磨损系数以及钻杆耐磨带本身的磨损量,优选出效果最优的耐磨带;在狗腿度严重的位置,可考虑采用一定数量的橡胶钻杆卡箍来减轻对套管的磨损;3山前地区钻井液采用CX-300减磨剂能够显著降低磨损速率,减轻套管磨损程度,但在不同钻井液体系使用之前应进行优化分析以确定最佳使用量;4在迪那204井使用高密度钻井液体系,全部采用优选的高密度重晶石粉代替铁矿粉作为加重剂,整个钻进过程中未出现钻具及套管磨损,迪那204井易损件消耗量仅为邻井迪那203井的左右,防磨减磨效果非常显著。  相似文献   

13.
Nearly 7,000 hectares of biodiesel forest will take shape in the northern province of Hebei in 2008, part of a national campaign to fuel the fast growing economy in a green way. In no more than five years, the Pistacia chinensis Bunge, whose seeds have an oil content of up to 40 percent, will yield five tons of fruit and contribute about two tons of high-quality biological diesel oil, according to the provincial forestry administration.  相似文献   

14.
Experts recently suggested China set up a state energy base in lnner Mongolia Autonomous Region to ease its energy thirst. The survey was co-conducted by senior researchers from the National Development and Reform Commission, Development Research Center of the State Council, Chinese Academy of Sciences and the Ministry of Finance. To plan and establish strategic energy bases at state level is in line with the principle of "giving priority to energy saving and diversifying energy consumption with the utility of coal at the core."  相似文献   

15.
正Current stituation of shale oil development in the world The US The country is blessed with abundant shale oil resources and had matersed whole sets of theories and technologies needed for their exploration and development after years of practices.According to an assessment of shale oil resources in major countries and regions of the world issued by the U.S.Energy Information Agency(EIA),the US ranks the second in the world with its 6.8 billion tons of technically recoverable shale oil(shale oil in place is about 136.3 tons).About 8plays had been confirmed to have  相似文献   

16.
Carbon deposition is a commonplace phenomenon occurringin the catalytic reaction process, in particular inthe system of direct dehydrogenation of ethylbenzene,because the reactant - ethylbenzene molecules on thesurface of metal oxide catalysts are prone to quickly formcarbon deposits, leading to deactivation of catalysts. Recently,the associate research fellow Mr. Liu Hongyangand the research fellow Mr. Su Dangsheng of the StateShenyang Material Science (United ) Laboratory of theInstitute of Metal Research, CAS by taking advantageof the carbon deposition process during direct dehydrogenationof ethylbenzene have ingeniously designeda Pd/C composite catalyst. This catalyst in comparisonwith the traditional commercial carbon nanotubesupported Pd catalyst shows a significantly improved performancein terms of its catalytic activity and sinteringresistantability.  相似文献   

17.
In recent years, Zhongyuan Petroleum Exploration Bureau (ZPEB) has made rapid development in overseas petroleum markets through its integrated reorganization. A new international business plattbrm established, aimed at becoming a highly ranked contractor with international petroleum engineering technology. ZPEB has expanded its business scope and scale, regulated the market structure,  相似文献   

18.
《中国油气》2014,(3):60-65
China and Brazil celebrated the 40th anniversary of establishing diplomatic relations between the two countries in July this year. Bilateral relations between China and Brazil have entered a new stage, and experts expect the already extensive cooperation between the two countries to deepen and broaden as Chinese President Xi Jinping made a state visit to Brazil in mid-July, which is his first state visit to Brazil since he assumed the office last year. The visit to China's largest trade partner in Latin America is at the invitation of Brazilian President Dilma Rousseff.  相似文献   

19.
The CNPC Group has successfully developed a largescaleethylene production package technology with independentintellectual property rights, which has beensuccessfully applied in the 1.2 Mt/a ethylene revamp andexpansion project at the Daqing Petrochemical Complex(DPC).  相似文献   

20.
The role of equipments in oil and gas exploration and development had never been attached with so much importance as that in shale oil and gas boom in the U.S. With the help of massive hydraulic fracturing and horizontal drilling techniques, the U.S., the world's No. 1 oil importer even started to dream about energy self-sufficiency with its proudly high production of shale oil and gas from several major shale plays in the country. However, what behind this remarkable achievement are powerful multi-stage hydraulic fracturing machinery and smart tools for directional drilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号