首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
1. Nitric oxide (NO) plays an important role in the control of glomerular haemodynamics and is synthesized from the amino acid L-arginine by a family of enzymes, NO synthase (NOS). 2. Nitric oxide synthase is present in the endothelium and also in the macula densa, a plaque of specialized tubular epithelial cells. Endothelial NOS is known to be stimulated by shear stress and hormones, while the factor that regulates the activity of macula densa NOS remains undefined. 3. Studies with the in vitro microperfusion of glomerular arterioles have shown that the constriction of afferent arterioles (Af-Art) induced by myogenic responses and angiotensin II (AngII) is stronger in the absence rather than in the presence of luminal flow. Furthermore, endothelial disruption or NOS inhibition abolishes such differences, suggesting that flow through the lumen stimulates the endothelium to synthesize and release NO, which in turn attenuates both the myogenic response and the action of AngII in the Af-Art. 4. In contrast, NOS inhibitors have no effect on efferent arteriolar (Ef-Art) constriction induced by AngII. 5. In preparations in which Af-Art and the macula densa are simultaneously microperfused, selective inhibition of macula densa NOS has been shown to augment Af-Art constriction when the NaCl concentration at the macula densa is high, suggesting that the macula densa produces NO, which in turn modulates tubuloglomerular feedback. 6. Thus, the differential actions of NO in the Af-Art, Ef-Art and the macula densa may be important in the control of glomerular haemodynamics under various physiological and pathological conditions.  相似文献   

2.
In the present study, we assessed the role of tissue angiotensin-converting enzyme as a determinant of intrarenal hemodynamics by using the angiotensin-converting enzyme inhibitor trandolaprilat and the angiotensin II receptor antagonist losartan. Afferent and efferent arteriolar diameters were measured with computer-assisted vessel imaging in isolated perfused hydronephrotic rat kidneys. In response to the addition of 1.0 nM angiotensin I, afferent arterioles constricted by 27.3 +/- 2.4% and efferent arterioles by 20.9 +/- 2.4%. These constrictions were similar to those observed after the administration of 0.3 nM angiotensin 11 (33.7 +/- 2.3% and 20.9 +/- 2.4% in afferent and efferent arterioles, respectively). Pretreatment with the angiotensin-converting enzyme inhibitor trandolaprilat (0.1-10 microM) blunted the angiotensin I-induced constriction of afferent arterioles (12.7 +/- 1.4%) and completely abolished the angiotensin I-induced constriction of efferent arterioles. Subsequent addition of angiotensin II to the perfusate resulted in a marked decrease of afferent (39.9 +/- 1.8%) and efferent (27.8 +/- 3.3%) arteriolar diameters. Pretreatment with the angiotensin II receptor antagonist losartan completely blocked the angiotensin I-induced constriction of both afferent and efferent arterioles. Collectively, these data suggest that angiotensin I affects renal microvessels through its conversion to angiotensin II, mediated by locally available tissue angiotensin-converting enzyme, which subserves the local control of the renal microcirculation.  相似文献   

3.
1. Sympathetic nerve stimulation causes contraction of the dilator muscle and the large arterioles of the iris via the activation of alpha 1B-adrenoceptors. We have investigated whether increases in adenosine 3': 5'-cyclic monophosphate (cyclic AMP) and the activation of receptors in these tissues can modulate these nerve-mediated contractions. 2. Increasing intracellular cyclic AMP with dibutyryl cyclic AMP (1 mM), forskolin (50 microM) or isobutylmethylxanthine (100 microM) produced relaxation of both the dilator and the arterioles, abolished the nerve-mediated constriction of the arterioles, but potentiated the nerve-mediated contraction of the iris dilator. 3. Pretreatment of the preparations with cholera toxin, to activate Gs permanently, caused a dilatation of the arterioles and abolished the nerve-mediated constriction but had no effect on the dilator muscle. 4. The beta-adrenoceptor agonist, isoprenaline (1 microM), the adenosine-A1,-A2 agonist, N-ethylcarboxamidoadenosine NECA (100 nM), in the presence of the A1-selective antagonist, 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 10 nM), and calcitonin gene-related peptide (CGRP, 10 nM) all separately caused a dilatation of the arterioles and abolished the nerve-mediated constriction, while only isoprenaline (1 microM) produced an effect on the dilator, i.e. a relaxation but a potentiation of the nerve-mediated contraction. These results suggest the presence of at least 3 types of receptor linked to Gs and an increase in cyclic AMP in the arterioles, i.e. beta-adrenoceptor, adenosine-A2 and CGRP, but only 1 Gs-linked receptor, i.e. beta-adrenoceptors, on the dilator muscle cells.2+ '  相似文献   

4.
PURPOSE: To examine the anterior optic nerve vasomotor effects of nonselective and relatively beta-1-selective beta-adrenergic antagonists in rabbits, because different influences on optic nerve blood flow with these medications have been suggested. METHODS: After topical therapy for 30 days with either timolol maleate 0.5% (six rabbits), betaxolol hydrochloride 0.5% (six rabbits), or placebo (two rabbits), the microvasculature of the optic nerve was examined with an intraluminal microvascular corrosion casting technique. The investigators were masked to both the medication group and the treated eye. The constriction, in percent of the downstream vessel caliber, was measured at the vascular branching point of arterioles supplying the anterior optic nerve. An average constriction was calculated and compared between the medication groups and between the treated and the contralateral, untreated eyes. RESULTS: Constriction values from a total of 218 arterioles supplying the anterior optic nerve were obtained for the 14 rabbits. The means of the average constriction on the treated side were comparable between the groups treated with timolol maleate, betaxolol hydrochloride, and placebo (one-way analysis of variance, P = .64), as well as between the treated and untreated eyes (two-tailed t-test for paired variables, P = .68 for timolol maleate and P = .42 for betaxolol hydrochloride). The statistical power to find a difference of 5% or more average constriction was at least 90%. CONCLUSIONS: Both relatively selective and nonselective beta-adrenergic antagonists produce no observable optic nerve vasomotor effects in the rabbit eye.  相似文献   

5.
The hypothesis that escape from norepinephrine-induced vasoconstriction in the intestine is due to relaxation of initially constricted vessels was tested in 18 anesthetized cats. Intestinal blood flow was measured by an electro magnetic probe on the superior mesenteric artery. Intestinal submucosal and muscle arterioles and small mesenteric arteries were studied by in vivo microscopy with an image-splitting technic. Continuous recordings of mesenteric flow and vessel diameter were made during the infusion into the superior mesenteric artery of norepinephrine (NE) at a rate of 1-2 mug/min for 3 min. Mesenteric flow decreased soon after the NE infusion began but then escaped. Microscopically, arterial constriction and escape were noted in submucosal, muscle, and mesenteric vessels with a time course similar to that for flow. Arteriovenous anastomoses were not seen. These findings support the hypothesis that escape from Ne-induced vasoconstriction is due to relaxation of initially constricted vessels.  相似文献   

6.
Microvascular responses to endothelin-3 were investigated in the rat mesentery under fluorescence microscopy. Endothelin-3 in a range of 0.1-100 pM induced arteriolar constriction in a dose-dependent manner, and stimulated Ca2+ mobilization, demonstrated by fura-2-associated fluorography, in both arterioles and venules. Cyclo(-D-Trp-D-Asp-Pro-D-Val-Leu-) (BQ123), and endothelin ETA receptor antagonist, at a concentration of 10 microM inhibited the endothelin-3 (100 pM)-induced arteriolar constriction and Ca2+ mobilization in arterioles but not in venules. In venules, an early onset leakage of FITC (fluorescein isothiocyanate)-labeled albumin and subsequent reduction of red blood cell velocity without arteriolar constriction were observed after the superfusion of endothelin-3 with BQ123, suggesting that a non-endothelin ETA receptor mediates macromolecular leakage followed by a decrease in blood flow. Endothelin-3 with BQ123 neither stimulated leukocyte adhesion nor activated luminol-dependent chemiluminescence in venules, showing that endothelin-3-increased permeability may be induced by leukocyte-independent and oxyradical-independent mechanisms. These microvascular alterations of permeability and red blood cell velocity were significantly attenuated by the addition of phalloidin, an F-actin stabilizer, suggesting the involvement of endothelial cell contraction. Nicardipine (1,4-dihydro-2,6-dimethyl-4-[3-nitrophenyl]methyl-2- [methyl(phenylmethyl)amino]-3,5-pyridinedicarboxylic acid ethyl ester), a dihydropyridine-type Ca2+ channel antagonist, eliminated endothelin-3-induced arteriolar constriction; however, it did not affect albumin leakage promoted by endothelin-3 with BQ123, suggesting that a non-voltage-dependent Ca2+ channel(s) is involved in non-endothelin ETA receptor-mediated Ca2+ mobilization and contraction of venular endothelial cells. Overall, it is conceivable that endothelin ETA receptor and voltage-dependent Ca2+ channel are involved in endothelin-3-induced arteriolar constriction. In addition, the present results suggest that Ca2+ mobilization in venular endothelium, which is mediated by a non-endothelin ETA receptor, possibly endothelin ETB receptor and regulated by non-voltage-dependent Ca2+ channel(s), may cause endothelial cell contraction and subsequently increase macromolecular permeability in microvascular beds treated with endothelin-3.  相似文献   

7.
Normally the rat gingival microcirculatory bed is represented by superficial capillaries, postcapillaries, arterioles, and venules of different diameters. The major changes characterizing microcirculation disorders in experimental periodontitis are edema, arteriolar constriction and dilatation, stasis, and thrombosis, which undergo variously directed shifts in different periods of pathological process.  相似文献   

8.
One of the ulcerogenic mechanisms by which ethanol induces mucosal lesions in the stomach is the depression of gastric mucosal blood flow (GMBF). The goal of this study was to determine whether lesion formation is the result of vascular ischemia alone or ischemia combined with congestion. The aims of this study were to answer this question by evaluating the relationship between GMBF, oxygen saturation (ISO2) and hemoglobin volume (IHb) in the gastric mucosa under the influences of ethanol and prostaglandin E2 (PGE2) in the ischemic and congestive states, using a laser Doppler flowmeter and tissue spectrum analyzer. Ligation of the gastric celiac artery or vein markedly decreased the GMBF and the ISO2 level. The former procedure also reduced but the latter increased the IHb level. Ethanol administration produced effects similar to venous ligation, i.e. vascular stasis with ischemia. There was a negative correlation between GMBF and severity of lesion formation after ethanol administration. However, at the lesion site all the hemodynamic parameters were significantly reduced, indicating that a necrotic condition had occurred. PGE2 preincubation (25 micrograms) elevated GMBF, ISO2 and IHb levels. It also alleviated the reduction of blood flow induced by ethanol and increased the recovery rate of GMBF and ISO2 after the release of arterial or venous ligation. It is concluded that the decrease in blood flow due to ethanol is probably caused by constriction of venules rather than arterioles inside the mucosa, and this effect could lead to vascular congestion. PGE2 probably dilates both arterioles and venules in the gastric mucosa and thereby increases the blood flow in the gastric mucosa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of prior in vivo hypoxia on the in vitro responses to changes in transmural pressure, alpha-adrenoceptor activation, and depolarization with KCl were evaluated in first-order diaphragmatic arterioles. Rats (n = 14 per group) were exposed to normoxia (controls) or to hypoxia (inspired O2 concentration = 10%) for 12 or 48 h. The arteriolar pressure-diameter relationships were recorded over a pressure range from 10 to 200 mm Hg. In separate groups of arterioles (n = 12 per group), the diaphragmatic arteriolar responses to phenylephrine (10(-8) to 10(-5 M) or KCl (10 to 100 mM) were determined after exposure to either room air or hypoxia for 48 h. In half of the arterioles studied, the endothelium was removed. After 12 h of hypoxia, the pressure-diameter relationship was normal in endothelialized arterioles but was shifted upward in de-endothelialized vessels (p < 0.05). After 48 h of hypoxia, the constrictor response to increasing transmural pressure was severely suppressed in all arterioles. The intraluminal diameters during activation with phenylephrine and KCl were larger in arterioles from rats exposed to hypoxia (103 +/- 8 and 81 +/- 7 microns, respectively) than in control arterioles (41 +/- 5 and 54 +/- 6 microns, respectively; p < 0.05 for differences). During maximum phenylephrine- and KCl-induced constriction in de-endothelialized arterioles, diameters averaged 125 +/- 8 and 105 +/- 8 microns, respectively, for arterioles from hypoxic rats and 32 +/- 6 and 40 +/- 5 microns, respectively, for arterioles from control vessels. Exposure to hypoxia results in impairment of diaphragmatic arteriolar smooth muscle reactivity and reversal of the normal inhibitory influence of the endothelium on diaphragmatic arteriolar tone.  相似文献   

10.
Autoregulation of blood flow implies reciprocal changes in vessel diameter and red blood cell velocity (VRBC) when perfusion pressure is altered. We tested two hypotheses: 1) blood flow will be autoregulated throughout arteriolar networks during a pressor response, and 2) wall shear rate (WSR; proportional to VRBC/diameter) will increase during autoregulation. Male hamsters (109 +/- 3 g; n = 22) were anesthetized (pentobarbital sodium 60 mg/kg), and the cremaster muscle was prepared for intravital videomicroscopy. Internal diameter and VRBC were monitored in first (1A)- through fourth (4A)-order arterioles; WSR and blood flow were calculated. Data were acquired at rest and at the peak of diameter responses to bilateral carotid artery occlusion (CAO). At rest, 1) mean arterial and 1A transmural pressures were 100 +/- 5 and 59 +/- 4 mmHg, respectively; 2) as branch order increased, arteriolar diameter, VRBC, and blood flow decreased (P < 0.05); and 3) WSR and resting tone increased with branch order (P < 0.05). During pressor responses to CAO, 1) arterial and 1A pressures increased to 145 +/- 7 and 89 +/- 5 mmHg, respectively (P < 0.05); 2) 1A branches dilated while 2A, 3A, and 4A branches constricted (P < 0.05); 3) VRBC and WSR increased in all branches (P<0.05); and 4) blood flow increased in 1A and 2A branches (P < 0.05), yet was unchanged (i.e., was autoregulated) in 3A and 4A branches. Arteriolar constrictions during CAO were not affected by alpha-adrenoceptor blockade with phentolamine (10(-6) M). We conclude that autoregulation of muscle blood flow during a pressor response involves myogenic constriction of arterioles with concomitant elevation of WSR.  相似文献   

11.
H Ohkuma  K Itoh  S Shibata  S Suzuki 《Canadian Metallurgical Quarterly》1997,41(1):230-5; discussion 235-6
OBJECTIVE: Morphological and microcirculatory changes in intraparenchymal vessels after subarachnoid hemorrhage (SAH) have not yet been fully clarified. We conducted this experimental study to investigate the serial morphological changes of intraparenchymal arterioles after SAH. METHODS: SAH was produced by injecting autologous arterial blood into the cisterna magna twice at 48-hour intervals in 30 dogs. The dogs were killed 3, 7, or 14 days after SAH, and then perfusion-fixed specimens of both anterior sylvian giri were obtained by using two methods. Microvascular corrosion casts produced by arterial injection of polyester resin were examined using scanning electron microscopy, and the widths of 40 arterioles of each animal were measured. Sectioned slices from the brain surface to 500 microns deep were examined by light microscopy, and external diameter, internal diameters, and wall thickness of the arterioles at depths of 50, 200, and 500 microns from the brain surface were morphometrically evaluated in 40 arterioles of each animal. In control animals receiving cisternal injections of mock cerebrospinal fluid (n = 10) and in healthy control animals (n = 10), the same examination and evaluation were performed. RESULTS: Corrosion casts of arterioles showed tapered narrowing with folding after SAH, and the width of the arterioles significantly decreased 3 and 7 days after SAH (P < 0.01). Morphometric examination by light microscopy showed a significant decrease of internal diameter of arterioles associated with a significant increase of wall thickness at any depth from the brain surface 3 and 7 days after SAH (P < 0.05 or P < 0.01). These findings improved 14 days after SAH. Control animals receiving cisternal injections of mock cerebrospinal fluid showed no significant differences compared with healthy control animals. CONCLUSION: These results suggest that constriction of intraparenchymal arterioles occurs after SAH and may contribute to delayed cerebral ischemia.  相似文献   

12.
We hypothesized that endothelin in addition to prostaglandin (PG)H2 may also contribute to the enhanced myogenic tone of skeletal muscle arterioles of spontaneously hypertensive (SH) rats. Changes in the diameter of isolated, cannulated arterioles (approximately 60 microm) from cremaster muscles of 30-week-old normotensive Wistar Kyoto (WKY) and SH rats were measured as a function of perfusion pressure (20 to 140 mm Hg). Pressure-induced constrictions were significantly enhanced between 60 to 140 mm Hg in arterioles of SH rats compared with those of WKY rats; at 80 and 140 mm Hg the normalized diameter of arterioles (expressed as a percentage of corresponding passive diameter) of SH rats was 11.0% and 15.4% less (P<.05) than that of WKY rats. After inhibition of thromboxane A2-PGH2 receptors by SQ 29,548 (10[-6] mol/L), the still enhanced myogenic response of SH arterioles was eliminated by the removal of endothelium or the administration of BQ-123 (10[-7] mol/L), an endothelin A (ET-A) receptor blocker, which also inhibited constrictions to exogenous ET-1 (10[-11] to 5x10[-10] mol/L). ET-1 elicited comparable responses in arterioles of SH and WKY rats. Thus, in SH rats the enhanced arteriolar constriction to increases in intravascular pressure seems to be due to the production of endothelium-derived constrictor factors PGH2 and endothelin.  相似文献   

13.
We have assessed, by intravital microscopy in rats, the effects of different anaesthetics on diaphragmatic arteriolar diameter. Rats were anaesthetized with etomidate, propofol or thiopental (groups E, P and T, respectively) and the diameters of the arterioles were measured sequentially at baseline and after topical application of either mefenamic acid (MA, 20 mumol litre-1) or N omega-nitro-L-arginine (NNA, 300 mumol litre-1), inhibitors of prostaglandins and nitric oxide, respectively. In group E, baseline arteriolar diameters were significantly higher than those in the two other groups (P < 0.01). MA and NNA induced significant constriction in the three groups (P < 0.001). However, whereas constriction induced by NNA was similar in the three groups, constriction induced by MA was significantly higher in group E compared with groups P and T (P < 0.05). We conclude that diaphragmatic arteriolar diameters in rats were greater during etomidate than during thiopental or propofol anaesthesia. This phenomenon may be mediated by prostaglandins.  相似文献   

14.
To explore a mechanism for spatial recruitment of capillaries, this study determined whether the arterioles controlling capillary perfusion, which typically arise as sequential branches along a transverse arteriole, could respond differently from each other in situ in a spatially ordered way. Diameter changes were measured for these arterioles at a known location in the intact microvasculature in the cremaster muscle of anesthetized Golden hamsters (N = 67); each arteriole controls separate capillary groups. These arterioles all had the same concentration dependence to locally (by micropipette) applied norepinephrine (NE, 10(-9) to 10(-3) mol/L), and 10(-9) mol/L NE did not induce diameter changes when applied locally to individual vessels. However, 10(-9) mol/L NE added to the tissue superfusate, or 5% added superfusate oxygen (also locally subthreshold), each induced significant diameter changes (both constrictions and dilations), in different branches, that were presumably due to summation of individually subthreshold events that changed the prevailing conditions at the point of observation. These significant diameter changes were related to the maximal diameter or to initial tone of the branches, but these changes occurred in different ways for NE versus oxygen. With NE, the branch arterioles that constricted (versus dilated) were significantly larger (maximal diameter, 22.3 +/- 2.6 versus 15.9 +/- 2.1 microns) and had higher tone (fractional constriction, 0.53 +/- 0.05 versus 0.63 +/- 0.05); with oxygen, those that constricted were the same size as those that dilated (maximal diameter, 28.6 +/- 1.1 versus 30.5 +/- 2.7 microns), but constrictors had lower tone (fractional constriction, 0.49 +/- 0.04 versus 0.39 +/- 0.06).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
OBJECTIVES: In vivo studies of the human coronary resistance circulation cannot control for indirect effects of myocardial metabolism, compression, and neurohumoral influences. This study directly examined the vasodilator responses of the human coronary microcirculation to both receptor-dependent and -independent agonists. METHODS: Atrial arterioles were dissected from human right atrial appendage (103 +/- 2 microns diameter, n = 185 vessels from 145 patients) obtained at the time of cardiopulmonary bypass and left ventricular vessels from explanted human hearts (148 +/- 10 microns diameter, n = 57 vessels from 18 patients). After dissection, vessels were mounted onto pipettes in Kreb's buffer under conditions of zero flow and at a constant distending pressure of 60 mmHg. Drugs were applied extraluminally and steady state changes in diameter measured with videomicroscopy. RESULTS: After contraction by endothelin or spontaneous tone, increasing concentrations of adenosine diphosphate (ADP) produced a similar dose-dependent dilation in vessels from atria (maximum 89 +/- 4%, n = 76) and ventricles (maximum 74 +/- 9%, n = 10). The dilation to ADP was abolished by mechanical removal of the endothelium. Similar dilator responses were found to bradykinin, substance P, arachidonic acid, and the calcium ionophore A23187 in both atria and ventricle. In contrast, acetylcholine (ACh) constricted all atrial vessels (-58 +/- 3%, n = 63) regardless of patient age or underlying disease. This constriction was attenuated by denudation, but not affected by inhibition of nitric oxide synthase or cyclo-oxygenase. Microvessels isolated from human ventricle exhibited a heterogeneous response to ACh with dilation being the predominant response. CONCLUSIONS: We conclude that isolated human coronary arterioles demonstrate endothelium-dependent dilation. However, the response to acetylcholine is unique with vasoconstriction in atrial vessels and dilation in ventricular arterioles.  相似文献   

16.
The effect of arterial pressure on vessel diameter, blood velocity, and intravascular pressure was examined in cat mesenteric arterioles in the arterial pressure range of 120--40 mmHg. Circumferential wall tension and volume flow in individual vessels were calculated. Twenty-nine arterioles with an average diameter of 25.1 micrometers were studied. Twenty-six reactive vessels dilated by an average of 6.5 micrometers with arterial pressure reduction, whereas three nonreactive arterioles narrowed by an average of 5.9 micrometers. When pressure was reduced, circumferential wall tension in reactive arterioles tended to be maintained, whereas in nonreactive vessels tension decreased more than pressure. Data from 25 of 26 reactive arterioles were consistent with the hypothesis that regulation of wall tension accounts for the autoregulatory response; however, in 18 of these vessels a flow-dependent mechanism could also account for the response. Thus the hypothesis that wall tension is a controlled variable responsible for autoregulation is supported, but an important role for flow regulation in local control is also supported.  相似文献   

17.
Fibroblasts growth factors (FGFs) exhibit well-known angiogenic actions, but there is some controversy about whether they have vasoactive effects on blood vessels which might contribute to angiogenesis per se. To clarify this, changes in arteriolar diameter were recorded during observation by videomicroscopy of 3rd- and 4th (terminal)-order arterioles (resting diameters 22.5 +/- 0.5 microns and 14.4 +/- 0.3 microns, respectively) in the hamster cheek pouch in response to FGF application. Recombinant human bFGF (basic) and aFGF (acidic) were applied from micropipettes positioned 5-10 microns from the adventitial surface of vessels. Maximum vasodilator effects of adenosine (10(-4) M) applied in a similar way were also observed. Adenosine increased the diameters of 4th-order arterioles by 37.2 +/- 3.8% and those of 3rd-order arterioles by 38.7 +/- 2.7. bFGF produced vasodilatation (threshold dose 0.1 ng ml-1) in both classes of arterioles, while aFGF produced dose-dependent constriction (threshold dose 0.01 ng ml-1). A maximal dilator effect in 4th-order arterioles was obtained with 100 ng ml-1 bFGF, when diameters reached 82.6 +/- 2.4% of those with adenosine. Maximal constrictor effect (-48.2 +/- 5.6% of resting diameter) occurred with a dose of 100 ng ml-1 aFGF. Vehicle alone (MOPS or bicarbonate buffer used as solvents for FGFs) had no effect. As vasoconstrictors are known to stimulate growth of smooth muscle cells while dilators stimulate growth of endothelial cells, it is possible that the opposing vasoactivities demonstrated for aFGF and bFGF are linked with their selective mitogenicity for smooth muscle and endothelial cells, respectively, and contribute to their angiogenic actions.  相似文献   

18.
In anesthetized cats, with the aid of the method of television line single out, the diameters of mesenteric microvessels and their blood flow were studied. The diameter of the flow in arterioles and venules was shown to undergo greater changes than the diameter of the microvessels proper, although a close correlation was revealed between both parameters. The above differences of the changes of diameters are more obvious during dilatory responses. The changes depend on the initial caliber of the arterioles and venules.  相似文献   

19.
BACKGROUND AND STUDY OBJECTIVE: Ambient cold exposure may induce myocardial ischemia by precipitating coronary artery constriction and a decrease in coronary blood flow. Estrogen has vasoactive properties that may prevent abnormal coronary constriction in a sex-independent manner. The purpose of this study is to determine whether estrogen acutely abolishes abnormal coronary responses to cold exposure in men. DESIGN: Randomized, double-blinded placebo-controlled clinical trial. SETTING: Cardiac catheterization laboratory. PATIENTS: Men referred for routine diagnostic coronary angiography who exhibit abnormal coronary artery constriction in response to a 90-s cold pressor test (CPT). INTERVENTION: Intravenous conjugated estrogens (1.25 mg) vs. placebo. MEASUREMENTS AND RESULTS: Rate-pressure product, coronary cross-sectional area (CSA), and coronary blood flow responses to the CPT were measured before and 15 min after intervention. In 12 men with CPT-induced coronary constriction who were assigned to estrogen, CPT induced a mean 21.8% decrease in coronary CSA (p < 0.01) and a nonsignificant change in coronary flow. After estrogen, the repeated CPT induced a 16.3% increase in CSA (p < 0.01) and a 54.9% increase in flow (p < 0.01). CSA and coronary flow responses to CPT were significantly different before and after estrogen (p < 0.01). In contrast, placebo was not associated with changes in CSA or coronary flow responses to CPT in eight men. CONCLUSIONS: In men, conjugated estrogens acutely abolish abnormal coronary constriction and improve coronary blood flow responses to an exogenous cold stimulus. These results suggest that estrogen favorably alters coronary vasoreactivity in men.  相似文献   

20.
Despite evidence that insulin per se may be an important regulator of glomerular hemodynamics, little is known about its direct action on the glomerular afferent arterioles (Af-Art) and efferent arterioles (Ef-Art), the crucial vascular segments that control glomerular hemodynamics. In the present study, we examined the direct effect of physiological concentrations of insulin on isolated microperfused rabbit Af- and Ef-Arts. After cannulation, vessels were equilibrated in insulin-free medium for 30 min. To determine whether insulin causes vasodilation or constriction, increasing doses (5, 20, and 200 microU/ml) were added to the bath and lumen of arterioles that were either preconstricted to 50% of control diameter with norepinephrine or left nonpreconstricted. Insulin caused no vasoconstriction in either Af- or Ef-Arts, but it reversed norepinephrine-induced constriction in Ef-Arts but not Af-Arts (suggesting a vasodilator action selective to the Ef-Art): at 200 microU/ml, insulin increased Ef-Art luminal diameter by 75.8 +/- 7.0% from the preconstricted level (n = 6; P < 0.008). The vasorelaxant effect of insulin on Ef-Arts was not affected by blockade of either endothelium-derived relaxing factor/nitric oxide or prostaglandin synthesis. Despite the lack of effect of insulin on Af-Art when added after the equilibration period, when Af-Arts were equilibrated in the presence of either 20 or 200 microU/ml insulin, their basal diameter was significantly reduced (11.7 +/- 0.9 microns; P < 0.025, n = 6, and 12.0 +/- 0.9 microns; P < 0.025, n = 7, respectively) compared with nontreated Af-Arts (16.2 +/- 1.3 microns; n = 7). In conclusion, this study demonstrates that at physiological concentrations, insulin dilates NE-constricted Ef-Arts, while insulin pretreatment enhances Af-Art tone. The disparate actions of insulin on the Af- vs the Ef-Art may contribute to its beneficial effect on glomerular hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号