首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thick polyimide layers can be formed by using some unique properties of poly(dimethylsiloxane)-polyimide (PDMS/PMDA–ODA) blends followed by surface modification and deposition of a second layer of polyimide precursor chemicals. The method is based on the micro-phase separation characteristics of these blends to yield surfaces that have PDMS-like character. Upon modification with UV/ozone treatment, a surface that is essentially SiO x and hydrophilic in nature is produced. This surface is amenable to reaction and deposition of a second polyimide layer from polyimide precursors. The thicker polyimide layer has enhanced adhesion between the original layer of the blend and the new polyimide layer and this approach finds extensive applications for products that require thick polymer layers. Changes in surface energy for various blend compositions were monitored by measurement of advancing contact angle with de-ionized water. Contact angle for unmodified polyimide films was on the order of 70° and it increased to about 104° after blending with PDMS and curing. UV/ozone treatment reduced the contact angle of the doped polyimide to less than 5°. X-ray photoelectron spectroscopy (XPS) and angle resolved XPS (ARXPS) measurements were used to monitor the chemical compositions of the various surfaces. High-resolution XPS spectra in the Si2p region confirm the transformation of O–Si–C bonds in PDMS to SiO x , where x is about 2. Scanning electron microscopy (SEM) of some selected samples shows that the blends contain phase separation of the polymers at the surfaces of the samples. Atomic force microscopy (AFM) of siloxane-free polyimide, and PDMS/PMDA–ODA blends both prior to and after UV/ozone exposure, show that the films are essentially flat at short treatment times (less than 60 min). AFM also reveals the separation of PDMS into micro-domains at the cured film surface and throughout the layer below the surface of the blended films. Adhesion of a subsequently deposited polyimide layer to the modified polyimide surface was found to be greatly improved when compared to the adhesion obtained for deposition onto a pristine polyimide surface.  相似文献   

2.
UV/ozone treatment of organic polymers having silicone additives to produce oxidized layers was achieved by doping a host polymer or prepolymer with a silicone additive, poly(dimethylsiloxane) (PDMS). The concentration of PDMS in the host polymer was low, typically in the range of 0.1–2.0% by weight. Host polymers were polyethylene, polyimide, and polyurethane. After film formation, the presence of PDMS was detected on the surface using X-ray photoelectron spectroscopy (XPS), consistent with wetting angle measurements that revealed a hydrophobic surface. The doped blend was then subjected to exposure in a UV/ozone environment such that a thin, stable barrier of SiO x was formed at the surface of the film. Rate of film modification was monitored by XPS and measurement of advancing contact angle using deionized water. XPS measurements also showed some evidence of modified fragments of the host polymer near the surface. Significant segregation of PDMS and subsequent transformation to silicon oxides has been demonstrated to occur in these doped systems. The stability of the modified glassy surface formed by UV/ozone treatment of a commercially available epoxy formulation containing a silicone additive was shown to be superior to that obtained by other treatment techniques, e.g., oxygen plasma modification.  相似文献   

3.
Cunjiang Yu 《Thin solid films》2010,519(2):818-822
Periodically wrinkled stiff thin films on elastomeric substrates have been found extensive applications, such as in stretchable electronics. This paper presents a cost-effective and simple method to form wrinkled stiff SiOx thin films on polydimethylsiloxane (PDMS) substrates at room temperature by ultraviolet/ozone (UV/O) radiation on pre-strained PDMS. Systemic studies have been conducted to understand the dependence of the wavy profile on the PDMS pre-strain, UV/O exposure time, and PDMS modulus. The mechanics analysis has been verified to be quantitatively or qualitatively accurate by experimental comparisons. The wrinkled SiOx/PDMS system is stretchable and provides a wavy mold for stretchable electrodes. The constant electrical resistance during mechanical stretching shows the stretchability of this system.  相似文献   

4.
Energy Dispersive X-ray and X-ray Photoelectron (XPS) spectroscopies show that SiO x films deposited by reactive r.f. magnetron sputtering at partial pressure ratios R between oxygen and argon in a wide range (1–0.005) have compositions close to the stoichiometric one. For these films high temperature annealing at 1,000 °C shifts the band in the Fourier Transform-Infrared spectrum due to the Si–O–Si stretching vibration to values typical of stoichiometric SiO2. Further decrease of R leads to splitting of the Si 2p XPS line indicating increase of the Si content and formation of a second phase in a SiO2 matrix. The electrical properties of test MOS structures with SiO x gate dielectric, regarding defect density in the oxide and at the SiO x /c-Si interface, degrade with the decrease of R. High temperature annealing at 1,000 °C strongly improves the properties of all films regarding leakage current and properties of the interface.  相似文献   

5.
Composite films SiOx/fluorocarbon plasma polymers were prepared by r.f. sputtering from two balanced magnetrons equipped with polytetrafluoroethylene (PTFE) and silica (SiO2) targets. Argon was used as the working gas. The obtained films were characterised by means of XPS, RBS, FTIR, AFM, TEM, microhardness and static contact angle measurements. The obtained SiOx/fluorocarbon plasma polymer films reveal different wettability (static contact angle of water ranges from 68° to 40°) and hardness (ranges from 720 to 3200 N/mm2) when the volume fraction ratio (filling factor) of SiO2 changes from 0.01 to 0.7. The concentration of elements determined by RBS/ERDA varies strongly over this range of filling factors. The heterogeneous structure of the composite films is indicated by TEM at high SiOx contents.  相似文献   

6.
Ion beam deposited hydrogenated undoped as well as SiOx (SiOx + N2, SiOx + Ar) doped DLC thin films were deposited and evaluated as possible anti-adhesive layers for nanoimprint lithography. Film surface contact angle with water was investigated as a measure of the surface free energy and anti-sticking properties. Contact angle of the DLC films was independent of SiOx doping and ion beam energy. Air-annealing resistance in terms of the contact angle with water of the synthesized diamond like carbon films was investigated. Optical transmittance spectra of the DLC films in UV-VIS range were measured to investigate it as possible anti-sticking layers for UV imprint lithography applications. DLC films with the most promising combination of the UV absorption and anti-sticking properties were revealed. Preliminary imprint tests with uncoated and thin DLC film coated hot imprint stamps were performed.  相似文献   

7.
Different chemical state of titanium oxide films were deposited on commercially pure Ti (CP Ti) by reactive DC magnetron sputtering under different oxygen flow rates to examine a possibility of their applications to endovascular stents. The chemical composition and crystal structure of the obtained films were analyzed by XPS and XRD, respectively. In dependence on the deposition parameters employed, the obtained films demonstrated different mixture of anatase TiO2, Ti2O3, TiO and Ti. The wettability of the films was measured by the water contact angle variation. By formation of titanium oxide film on CP Ti, contact angle was decreased. In order to modify and control the surface wettability, the resultant TiOx films were etched subsequently by different plasma. The wettability was influenced by etched process according to the decreased contact angle values of etched TiOx film. Furthermore, TiOx films became highly hydrophilic by ultraviolet (UV) irradiation, and returned to the initial relatively hydrophobic state by visible-light (VIS) irradiation. The wettability of the TiOx film was enabled to convert between hydrophilic and hydrophobic reversibly by alternative UV and VIS irradiation. By adjusting deposition parameter and further modification process, the wettability of the TiOx films can be changed freely in the range of 0–90°.  相似文献   

8.
Abstract

Thin films composed of MgAl2O4 and (Ni0.5Zn0.5)Fe2O4 ([MA(100-x)-NZFx] films) were grown on fused SiO2 substrates by pulsed laser deposition. X-ray diffraction measurements revealed that the films were polycrystalline, and that their lattice constant varied linearly with composition, indicating the formation of a solid solution. The film with x=60 was paramagnetic and those with x ≥ 70 were ferromagnetic. The films had a transparency above 75% in the visible range, but the transparency decreased with the x value. The optical band gaps were 2.95, 2.55, 2.30 and 1.89 eV for x=20, 40, 60, 80 and 100, respectively. The Faraday rotation angle increased with x in the visible range, and the film with x=70 exhibited a value of 2000 degrees cm-1 at 570 nm, which is comparable to the rotation angle of Y3Fe5O12. Owing to their high transparency, which extends into the visible range, the [MA(100-x)-NZFx] films can be used in novel magneto-optical devices.  相似文献   

9.
Radiofrequency (13.56 MHz) plasma enhanced chemical vapor deposition process is used for deposition of SiOx films on bell metal substrates using Ar/hexamethyldisiloxane/O2 glow discharge. The DC self-bias voltage developed on the substrates is observed to be varied from − 35 V to − 115 V depending on the RF power applied to the plasma. Plasma potential measurements during film deposition process are carried out by self-compensated emissive probe. The deposited films are characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nanoindentation, nano-scratch test and thermogravimetric analysis. The characterization results show strong dependency of the SiOx films properties on the energy of the ions impinging on the substrates during deposition. Analysis of Raman spectra indicates an increase in vitreous silica content and reduction in defective Si-O-Si chemical structure in the deposited SiOx films with increasing ion energy impinging on the substrates. The increase in inorganic (Si and O) content in the SiOx films is further confirmed from XPS analysis. The growth of SiOx films with more inorganic content and defect free chemical structure apparently contribute to the increase in their hardness and scratch resistance behavior. The films show higher thermal stability as the energy of the ions arriving at substrates increases with DC self-bias voltage. The possibility of using SiOx films for surface protection of bell metal is also explored.  相似文献   

10.
Au/SiOx nanocomposite films have been fabricated by co-sputtering Au wires and SiO2 target using an RF magnetron co-sputtering system before the thermal annealing process at different temperatures. The structural and optical properties of the samples were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), optical transmission, and reflection spectroscopy. XPS analysis confirms that the as-prepared SiOx films are silicon-rich suboxide films. FESEM images reveal that with an increase in annealing temperature, the embedded Au NPs tend to diffuse toward the surface of the SiOx films. In IR spectra, the intensity of the Si-O-Si absorption band increases with the annealing temperature. Optical spectra reveal that the position and intensity of the surface plasmon resonance (SPR) peak are dominated by the effect of the inter-particle distance and size of the Au NPs embedded in the SiOx films, respectively. The SPR absorption peak shows the blue-shift from 672 to 600 nm with an increase in annealing temperature. The growth of silica nanowires (SiOx NWs) is observed in the film prepared on a c-Si substrate instead of a quartz substrate and annealed at temperatures of 1000 °C.  相似文献   

11.
FeOx, TiO2 and CeOx layers were deposited by pulsed laser deposition (PLD) technique onto Au films or Au nanoparticles supported on SiO2/Si(100). The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS) and their reactivity was studied in catalytic CO oxidation. Comparison was made with reference samples of FeOx/SiO2/Si(100), TiO2/SiO2/Si(100), CeOx/SiO2/Si(100) and Au/SiO2/Si(100) layers. The catalytic activity of the metal-oxide/Au/SiO2/Si(100) samples must be attributed to active sites located on the metal-oxides overlayer modified by gold underneath, since no Au was exposed to the surface according to the XPS and SIMS. We found a promoting effect of gold on the catalytic activity of the FeOx overlayer and an inhibiting effect of gold on the TiO2 and CeOx overlayers. These findings are discussed in terms of electronic interactions at the Au/metal oxide interface.  相似文献   

12.
The present work was made to investigate the effect of oxygen pressure of SiOx layer on the electrical properties of Ga-doped ZnO (GZO) films deposited on poly-ethylene telephthalate (PET) substrate by utilizing the pulsed-laser deposition at ambient temperature. For this purpose, the SiOx buffer layers were deposited at various oxygen pressures ranging from 13.3 to 46.7 Pa. With increasing oxygen pressure during the deposition of SiOx layer as a buffer, the electrical resistivity of GZO/SiOx/PET films gradually decreased from 7.6 × 10− 3 to 6.8 × 10− 4 Ω·cm, due to the enhanced mobility of GZO films. It was mainly due to the grain size of GZO films related to the roughened surface of the SiOx buffer layers. In addition, the average optical transmittance of GZO/SiOx/PET films in a visible regime was estimated to be ~ 90% comparable to that of GZO deposited onto a glass substrate.  相似文献   

13.
The SiO2-like layers were obtained by plasma-oxidation of the SiOxCy(− H) films deposited from hexamethylcyclotrisiloxane (HMCTSO) with helium and oxygen. The SiO2-like layers were formed on as-deposited SiOxCy(− H) films within a second by oxidation using the He/O2 atmospheric pressure dielectric barrier discharge (APDBD). The elemental ratio of oxygen to silicon in the layer was increased up to 1.95 which is closed to stoichiometry of SiO2. The elemental composition and surface morphology were studied by means of x-ray photoelectron spectroscopy and atomic force microscopy. Wettability of the oxidized thin films was investigated by water droplet contact angle measurement. The contact angle of SiOxCy(− H) films are decreased from 63° to below 10° within a second by oxidation. Correlation between the elemental composition and the contact angle were discussed. The effects of oxidation duration and discharge generation voltage on the composition and surface morphology of the film were investigated.  相似文献   

14.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

15.
Chitosan (Chi) and poly (styrene sulfonate) (PSS) were employed to surface modify titanium thin film via electrostatic self-assembly (ESA) technique in order to improve its biocompatibility. The surface chemistry, wettability and surface topography of the coated films with different number of deposited layers were investigated by using X-ray photoelectron spectroscopy (XPS), water contact angle measurement and atomic force microscopy (AFM), respectively. The results indicated that a full surface coverage for the outmost layer was achieved at least after deposition of five layers, i.e., PEI/(PSS/Chi)2 on the titanium films. The formed multi-layered structure of PEI(PSS/Chi) x (x ≥ 2) on the titanium film was stable in air at room temperature and in phosphate buffered solution (PBS) for at least 3 weeks. Cell proliferation, cell viability, DNA synthesis as well as differentiation function (alkaline phosphatase) of osteoblasts on chitosan-modified titanium film (PEI/(PSS/Chi)6) and control sample were investigated, respectively. Osteoblasts cultured on chitosan-modified titanium film displayed a higher proliferation tendency than that of control (p < 0.01). Cell viability, alkaline phosphatase as well as DNA synthesis measurements indicated that osteoblasts on chitosan-modified titanium films were greater (p < 0.01) than those for the control, respectively. These results suggest that surface modification of titanium film was successfully achieved via deposition of PEI/(PSS/Chi) x layers, which is useful to enhance the biocompatibility of the titanium film.  相似文献   

16.
SiOx films produced from octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) with oxygen carrier gas have a low contact angle. The surface energy of the SiOx films can be changed by controlling the plasma process. SiOxCyHz films were deposited on polycarbonate substrates by plasma enhanced chemical vapor deposition using OMCTS without oxygen carrier gas. The input power in the radio frequency plasma was changed to optimize the surface energy of the resulting SiOxCyHz film. The plasma diagnostics, surface energy and surface morphology were characterized by optical emission spectrometry, contact angle measurements and atomic force microscopy, respectively. The chemical properties of the coatings were examined by Fourier transform infrared spectroscopy. The surface energy of the SiOxCyHz films produced using a room temperature plasma process could be controlled by employing the appropriate intensity of excited neutrals, ionized atoms, molecules and energy (input rf power and bias), as well as the suitable dissociation of OMCTS.  相似文献   

17.
In this study, nanocomposite material consisting of silicon suboxide (SiOx) film embedded with gold nanoparticles (Au NPs) was synthesized using hybrid technique combining hot wire evaporation and plasma enhanced chemical vapour deposition (PECVD) method. As prepared Au/SiOx films were rapid thermal annealed at constant temperature of 800 °C for different annealing times from 30 to 120 s. The use of tungsten filament for Au evaporation allowed the effective reduction of the silicon content. Depth profiling analysis confirmed the embedded in structure of Au/SiOx film. FESEM, UV/VIS/NIR and PL spectroscopy were utilized to study the structural and optical properties of annealed Au/SiOx film for different times. Embedded Au NPs diffused towards the surface of SiOx film agglomerate and increased in size with an increase in annealing time. Localized surface plasmon resonance (LSPR) peak induced by Au NPs in SiOx, which is dependent on annealing time, was clearly observed in optical spectra. Intensity and position of the PL peak located at 580 nm experienced a decrease and red-shift, as annealing time increased.  相似文献   

18.
Thin films composed of MgAl2O4 and (Ni0.5Zn0.5)Fe2O4 ([MA(100-x)-NZFx] films) were grown on fused SiO2 substrates by pulsed laser deposition. X-ray diffraction measurements revealed that the films were polycrystalline, and that their lattice constant varied linearly with composition, indicating the formation of a solid solution. The film with x=60 was paramagnetic and those with x ≥ 70 were ferromagnetic. The films had a transparency above 75% in the visible range, but the transparency decreased with the x value. The optical band gaps were 2.95, 2.55, 2.30 and 1.89 eV for x=20, 40, 60, 80 and 100, respectively. The Faraday rotation angle increased with x in the visible range, and the film with x=70 exhibited a value of 2000 degrees cm-1 at 570 nm, which is comparable to the rotation angle of Y3Fe5O12. Owing to their high transparency, which extends into the visible range, the [MA(100-x)-NZFx] films can be used in novel magneto-optical devices.  相似文献   

19.
In this work, TiO2 and TiO2-SiO2 thin films on glass substrates were prepared by the sol-gel dip coating process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the structural and chemical properties of the films. The super-hydrophilicity was assessed by water contact angle measurement. XRD measurements confirmed the presence of polycrystalline anatase and rutile phases in the films. The water contact angle measurements showed that addition of SiO2 has a significant effect on the super-hydrophilicity of TiO2 thin films, especially if they are stored in a dark place.  相似文献   

20.
I Lewin  E Grünbaum  N Croitoru 《Vacuum》1983,33(4):237-240
The Polarity Dependent Memory and Switching effect (PDMS) has been observed in sandwiches of metal/a-Si/ITO layers and metal/a-Si/In. The film composition has been analysed by Auger Electron Spectroscopy and peak heights of the metals, Si and SiOx have been measured as a function of film depth. No penetration of electrode material into the a-Si film was observed and the interfaces were abrupt even after many cycles of switching. A mechanism based on dendrite formation does not therefore operate in this type of PDMS. Traces of SiOx have been found at the ITO/a-Si interface which are attributed to the presence of ITO or the deposition of In after exposure of a-Si to air. The SiOx layer appears only in the OFF state and not in the ON state of the device. Hence a model based on voltage formation and destruction of an approximately 500 Å thick SiOx layer at the a-Si/ITO interface is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号