首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper describes an experimental and analytical study of the normal and scratch hardnesses of a model soft rigid-plastic solid. The material known as ‘Plasticine’, a mixture of dry particles and a mineral oil, has been deformed with a range of rigid conical indentors with included angles of between 30° and 170°. The sliding velocity dependence of the computed scratch hardness and friction has been examined in the velocity range 0.19 mm/s to 7.3 m/s. Data are also described for the time dependence of the normal hardness and also the estimated rate dependence of the intrinsic flow stress. The latter values were estimated from data obtained during the upsetting of right cylinders. Three major conclusions are drawn from these data and the associated analysis. (1) A first-order account of the scratching force may be provided by adopting a model which sums the computed plastic deformation and interfacial sliding contributions to the total sliding work. This is tantamount to the adoption of the two-term non-interacting model of friction. (2) For this system during sliding, at high sliding velocities at least, the interface shear stress which defines the boundary condition is not directly related to the bulk shear stress. The interface rheological characteristics indicate an appreciable dependence on the imposed strain or strain rate. In particular, the relative contributions of the slip and stick boundary conditions appear to be a function of the imposed sliding velocity. (3) The computed normal and scratch hardness values are not simply interrelated primarily because of the evolving boundary conditions which appear to exist in the scratching experiments.  相似文献   

2.
Although, a lot is known about the factors contributing to friction, a complete physical understanding of the origins of friction is still lacking. At the macroscale several laws have long since described the relation between load (Amontons, Coulomb), apparent and real area of contact (Bowden and Tabor), and frictional forces. But it is not yet completely understood if these laws of friction extend all the way down to the atomistic level. Some current research suggests that a linear dependence of friction on the real contact area is observed at the atomistic level, but only for specific cases (indentors and rigid substrates). Because continuum models are not applicable at the atomic scale, other modeling techniques (such as molecular dynamics simulations) are necessary to elucidate the physics of friction at the small scale. We use molecular dynamics simulations to model the friction of two rough deformable surfaces, while changing the surface roughness, the sliding speed, and the applied normal load. We find that friction increases with roughness. Also all sliding cases show considerable surface flattening, reducing the friction close to zero after repetitive sliding. This questions the current view of (static) roughness at the atomistic scale, and possibly indicates that the macroscopic laws of friction break down several orders of magnitude before reaching the atomic scale.  相似文献   

3.
An experimental study is reported in which nominally sharp cutting tools having ground-on flank wear lands were used to machine zinc, brass and aluminium workpieces. The results indicate that the laws of sliding friction are obeyed at the interface between the flank wear land and the workpiece material at low speeds. However, an analysis of published data indicates that sticking friction conditions pertain at higher cutting speeds.  相似文献   

4.
基于更新的拉格朗日方程,模拟了高速条件下金属正交切削的加工过程,并在刀-屑接触表面上分别建立了库仑摩擦模型和粘结-滑移摩擦模型,通过将切削力、吃刀抗力、切屑厚度和刀-屑接触长度的模拟预测值与相关文献的试验结果比较表明,粘结-滑移摩擦模型更符合实际的摩擦模型,即在金属切削过程中,刀-屑接触表面上同时存在滑移摩擦和粘结摩擦。  相似文献   

5.
A finite element model is used to simulate sliding inception of a rigid flat on a deformable sphere under combined normal and tangential loading. Sliding inception is treated as the loss of tangential contact stiffness under combined effects of plasticity, crack propagation and interfacial slip. Energy dissipation distribution is used to quantify the relative contribution of these mechanisms on the increased compliance during tangential loading. Materials with different strength and toughness properties, and varying local interface conditions ranging from fully adhered to finite friction, are studied to relate variations in plastic deformations, crack and slip to the sliding inception. For fully adhered contact condition, crack and fracture toughness have no effect on sliding inception, with plasticity, the dominant failure mechanism. A measure of recoverable strain (yield strength to Young’s modulus ratio) is found to be the most influential parameter in sliding inception. Interfacial slip is expectedly the dominant mechanism for sliding inception for lower coefficient of friction, modeling lubricated contacts. Interplay of plasticity and interfacial slip is found to govern the onset of sliding for higher local friction coefficients. Furthermore, the single asperity results are incorporated in a statistical model for nominally flat contacting rough surfaces under combined normal and tangential loading to investigate the stochastic effects due to surface roughness and material property uncertainties. The results show that the static coefficient of friction strongly depends on the normal load, material properties, local interfacial strength and roughness parameters.  相似文献   

6.
Accurately predicting the physical cutting process variables, e.g. temperature, velocity, strain and stress fields, plays a pivotal role for predictive process engineering for machining processes. These predicted field variables, however, are highly influenced by workpiece constitutive material model (i.e. flow stress), thermo-mechanical properties and contact friction law at the tool-chip-workpiece interfaces. This paper aims to investigate effects of friction modeling at the tool-chip-workpiece interfaces on chip formation process in predicting forces, temperatures and other field variables such as normal stress and shear stress on the tool by using advanced finite element (FE) simulation techniques.For this purpose, two distinct FE models with Arbitrary Lagrangian Eulerian (ALE) fully coupled thermal-stress analyses are employed to study not only the effects of FE modeling with different ALE techniques but also to investigate the influence of limiting shear stress at the tool-chip contact on frictional conditions, which was never done before. A detailed friction modeling at the tool-chip and tool-work interfaces is also carried by coupling sticking and sliding frictions. Experiments and simulations have been performed for machining of AISI 4340 steel using tungsten carbide tooling and the simulation results under increasing limit shear stress have been compared to experiments. The influence of limiting shear stress on the tool-chip contact friction was explored and validity of friction modeling approaches was examined. The results presented in this work not only provide a clear understanding of friction in FEM modeling of machining but also advance the process knowledge in machining.  相似文献   

7.
When studying contact with friction between two bodies, it is not possible to obtain data on real contact conditions on the basis of steady-state situations. Indeed, contacts with friction usually lead to dynamic instabilities generated at the contact interface. It is therefore necessary to take into account contact dynamics in order to better understand the phenomena involved during sliding with friction. The explicit dynamic finite element code PlastD in 2D is used to simulate the contact between two bodies. A constant Coulomb friction coefficient is imposed at the interface. The simulations carried out permitted identifying local contact conditions (kinematics, tribological state, stresses, etc.). They revealed that different instability regimes can be generated (stick–slip, slip–separation, stick–slip–separation, etc.). Local contact stresses and the sliding velocity oscillate through time when instabilities are generated and their maximum values can be much higher than those expected for steady-state conditions. The aim of this paper is to analyse the frictional instabilities and their consequences on the heat generated in the contact. First, the influence of the different instability regimes is studied on a simple contact. Then, an industrial mechanism is studied (wheel–rail contact) to investigate the influence of local contact conditions on the temperature of the rail surface.  相似文献   

8.
In this study, we apply the finite element method to investigate precursor to frictional sliding phenomena arising immediately prior to macroscopic stick–slip transitions in elastic bodies within the framework of a continuum theory. Using a numerical model that mimics an actual experimental system, we study the behavior of contact surface nodes to assess the influence of stiffness, driving velocity, initial conditions, and discretization conditions on the propagation characteristics of microscopic slips. In particular, we show that the initial distribution of frictional stress arising due to the Poisson effect has a significant effect on the propagation characteristics in slip regions. Next, based on the results of a finite element analysis of precursor phenomena that accounts for the influence of bulk compliance, we consider the determination of parameters in rate-dependent friction models. With regard to the behavior of sliding friction, we show that the relationship between friction tests and friction models is fundamentally different from the relationship between material tests and constitutive models for material deformation. We conclude that a proper understanding and classification of friction tests, friction models, and the relationship between these tests and boundary value problems are crucial ingredients in the application of computer-aided engineering techniques to sliding-friction phenomena; indeed, friction tests must ultimately be treated as boundary value problems.  相似文献   

9.
R.J. Conant  S.L. Rice  R. Solecki 《Wear》1984,93(1):101-110
The interface stress distributions arising in linearly elastic cylindrical pins sliding against a flat rigid counterface are considered in this paper. Coulomb friction is assumed, and the interface pressure distribution arises by virtue of a displacement applied to the far end of the pin. Various aspect ratios are studied in order to assess stiffness effects in pin-on-disc tribotesting.  相似文献   

10.
To investigate thermomechanical contacts between an elastic–plastic sphere and a rigid flat, simulations with slip rates ranging from 0.1 m/s to 10 m/s were performed. As interfaces with strong interfacial bonding but weak substrate were specifically targeted, slip initiation was treated as shear failure of the softer material in numerical simulations. The simulations show that both sliding friction coefficient and friction stress are significantly dependent on slip rate while the maximum static friction coefficient is independent of that. Moreover, the energy release during the transition from full stick to full slip is comparable to the shear fracture energy of the material.  相似文献   

11.
A numerical investigation of laser-assisted machining for Inconel 718 is presented. This study is based on a three-dimensional finite element model, which takes into account a new constitutive law of Inconel 718 as well as friction and heat transfer models at the tool-chip interface that are developed at the Aerospace Manufacturing Technology Centre (AMTC), of the National Research Council of Canada (NRC), Canada. The material flow stress is described as a function of the strain, the strain rate, and the temperature. The friction model accounts for the sticking and the sliding regions observed experimentally. The formulation of the heat transfer model is based on combining contact mechanics analysis with the solution of the thermal contact problem. The laser beam is modeled as a moving heat source, which is experimentally calibrated. To validate the three-dimensional finite element model, laser-assisted machining experiments were designed and carried out under different cutting conditions. The predicted cutting force and chip thickness are compared with the experimental results. The temperature, stress, strain, and strain rate fields in the primary deformation zone are investigated in order to reveal the plastic deformation process under laser-assisted machining operations.  相似文献   

12.
Tribological studies were performed on the friction and wear behaviour of polymers under conditions of dry sliding. The investigations were carried out with thermoplastics suitable for practical applications, eg HDPE, PP, PTFE, PA 6, PA 66, POM, PETP, PBTP, PI, as well as with some filled and reinforced polymers and composite materials. For polymer-polymer sliding pairs, the experimentally determined friction values could be related to the surface energies of the material pairings. In the case of polymer-metal sliding pairs, a relationship between the combined interfacial stresses and the rupture strength of the polymers was found. In addition to the review of correlations between the tribological behaviour of thermoplastics and material properties, the dependency of wear and friction on surface roughness, sliding velocity and contact pressure for various filled polymers is described.  相似文献   

13.
金属板料冲压成形的数值模拟   总被引:6,自引:0,他引:6  
本文采用有限元动力显式算法模拟金属板料冲压成形的加工过程。四结点蜕化壳单元和刚体壳单元分别用来建立权和模具的有限元模型;更新Lagrange法和速率型本构关系被用来处理板料变形中的大应变和大转动;材料模型采用塑性各向异性屈服与等向强化模型;通过主从面模型定义板料和模具的接触,接触算法采用运动约束法,摩擦力用库仓定律计算;并利用动力松弛法对回弹过程进行了计算。模拟结果和实际零件比较,证明模型合理,算法稳定,结果可靠,具有良好的应用价值。  相似文献   

14.
《Wear》1987,116(1):69-75
Water is found to be an effective boundary lubricant for carbon-fibre-reinforced poly(phenylene sulphide) sliding against steel. With increasing load, the interfacial contact temperature, friction and wear increase. The frictional force and friction coefficient exhibit a minimum at a fibre content of 5–10 wt.%. A minimum in wear appears at a fibre content of 5–10 wt.% and a maximum at about 45 wt.%. No appreciable differences are found between the wear with water lubrication and unlubricated, while the pressure-velocity limit is remarkably enhanced implying that this composite is insensitive to water and is an all round wear-resistant material.  相似文献   

15.
《Wear》2002,252(1-2):150-160
Interaction between a soft rubber asperity and its hard counterpart is traced with the help of a finite element computation. The analysis is aimed to estimate the influence of adhesion between rubber and rigid surfaces and the energy losses arising from the deformation of rubber bulk to the sliding resistance. At the contact zone, interfacial bonds are formed due to adhesion and their resistance to sliding is represented by the shear strength of the contact interface. In the rubber bulk, the hysteresis loss is calculated using an appropriate model of the viscoelastic mechanical behavior of rubber for large strains. Dependence of friction on sliding speeds and temperature is hence detected. Influence of surface roughness and contact pressure on friction is also examined.  相似文献   

16.
The need for good friction models for transient motions has increased as a consequence of the increased use of mechatronics and control engineering principles in precision mechanics. The machine elements in such equipment often involve rolling and sliding contacts. Most studies of friction in rolling and sliding contacts running under dry or boundary lubricated conditions have examined steady-state conditions.This paper describes simulations of the motion of a cylinder between two planes, first with a step change in velocity and then with an oscillating motion of the upper plane. The motion of the cylinder is determined by the friction in the contacts and the inertia. The friction in the rolling and sliding contacts is simulated with a brush model. The surfaces are assumed to be ideally smooth.For the step change in velocity, there is initially a period of complete sliding in the upper contact. During the sliding period, the friction force is the maximum possible, but it decreases as the complete sliding ends. The simulations show heavily damped oscillations, with frequencies corresponding to the natural translatory and torsional frequencies of the system. For the oscillating motions the sliding increases with the frequency of the motion, as expected.  相似文献   

17.
It has already been known for many years that the use of some extreme-pressure (EP), antiwear or friction modifier (FM) additives in mineral oils can produce different kind of boundary or chemical reaction films on sliding contact surfaces of some kinds of steel in boundary lubrication conditions. Using a sliding ball-on-disc configuration lubricated with some kinds of EP or FM, the wear scars on the balls can always reach the same limit size at a specified applied load and sliding velocity. From the fact that the limit sizes of wear scars decrease as sliding speed is increased or applied load is decreased, the load carrying ability of a chemical film can be obtained by extrapolating the data to the condition of zero sliding speed and is so defined that if the contact pressure is greater than this load carrying ability, the contact surfaces will continuously be worn; if the contact pressure is smaller than it, no more wear will occur on the surfaces. Based on this load carrying ability, the hydrodynamic effect of sliding pairs can also be identified. Therefore, the limit size of wear scar at specified sliding speed and applied load can also be predicted in a mixed lubrication condition.  相似文献   

18.
Friction models for sliding dry, boundary and mixed lubricated contacts   总被引:1,自引:0,他引:1  
Friction, lubrication, and wear have a strong influence on the performance and behavior of mechanical systems. This paper deals with different friction models for sliding contacts running under different conditions. The models presented are suited to different situations, depending on the type of contact, running conditions, and the behavior of interest. The models will be discussed from simulation and tribological points of view. The different types of friction models considered are:
• friction models for transient sliding under dry, boundary and mixed lubrication conditions,
• friction models for micro-displacements of engineering surfaces subjected to transient sliding,
• friction models often used in the simulation and control of technical systems,
• combined friction models that represent physical behaviors fairly well but are also suitable for use in simulating systems,
• friction models that take into account the stochastic nature of interacting surface asperities.
Keywords: Friction; Model; Sliding contact; Coulomb; Dahl; Stribeck  相似文献   

19.
机油盘冲压过程截面的有限元模拟与实验验证   总被引:6,自引:1,他引:5  
板料冲压过程的模具设计是一个费时费力的过程。采用有限元可以降低设计费用 ,缩短设计周期。本文采用有限元软件 MARC基于拉格朗日的弹塑性本构方程建立了一个有限元模型来分析机油盘的成形过程。模拟中考虑板料的厚向异性 ,接触面间的摩擦约束采用库仑摩擦模型。模具看作刚体 ,板料作为变形体。模拟和实验结果的比较表明模拟的壁厚变薄分布与测量结果吻合得很好 ,因而理论模拟的结果可用于真实情况的预测  相似文献   

20.
建立了二维双粗糙体分形表面的接触模型,在固定滑动速度工况下考虑材料的磨损失效,针对是否考虑接触过程中的黏着因素,动态探讨了粗糙体在滑动过程中的摩擦磨损变化情况。运用有限元方法对滑动过程的摩擦磨损进行模拟仿真,得出考虑黏着因素的界面剪切强度τ=σy/3(σy为材料的屈服应力)时的摩擦因数平均值为0.48;对滑动过程是否考虑黏着因素的磨损率及振动情况进行分析比较,引入快速傅里叶函数对摩擦振动进行变换得到功率谱,结果发现,考虑黏着因素的情况下,相应的磨损率较大,功率谱低频成分较多,振动相对比较平缓,所需要的能量也相应比较大。将模拟仿真结果与实验进行比较,验证了模拟仿真的合理性,也加深了对摩擦磨损过程物理图像的理解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号