首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
High-pressure treatment is useful for increasing the microbiological safety of ready-to-eat foods. With dry-cured hams, this treatment can be applied to the finished product after slicing and vacuum packaging. The effect of high-pressure treatment on the survival of inoculated Listeria monocytogenes Scott A and on the sensory characteristics of two Spanish dry-cured hams, Iberian and Serrano, was investigated. Ham slices were inoculated with L. monocytogenes at 6 x 10(6) CFU/g and held at 4 degrees C for 20 h before high-pressure treatment. During this holding period, the population of the pathogen declined by 0.44 and 0.51 log CFU/g in Iberian and Serrano hams, respectively. Treatment at 450 MPa for 10 min at 12 degrees C reduced L. monocytogenes populations by 1.50 and 1.16 log CFU/g in Iberian and Serrano hams, respectively. During the first week of storage at 4 or 8 degrees C, L. monocytogenes populations declined by an average 0.89 log CFU/g in pressurized Iberian ham and 2.09 log CFU/g in pressurized Serrano ham. After 60 days at 4 or 8 degrees C, the respective populations in pressurized and control hams were 3.24 and 4.70 log CFU/g for Iberian ham and 2.73 and 5.07 log CFU/g for Serrano ham. The color parameters L* and a* were not influenced by high-pressure treatment, and parameter b* was increased only in Iberian ham. Sensory characteristics of hams were not affected by high-pressure treatment. Treatment of Iberian and Serrano hams at 450 MPa for 10 min significantly reduced the population of L. monocytogenes Scott A without a detrimental effect on the sensory characteristics of the hams.  相似文献   

2.
Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine if the steps in the processing of cold-smoked salmon affect survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C in a humidity chamber for 24 h. However, combining brining and liquid smoke with a drying (25 degrees C) step reduced the bacterium 10-100 fold over a 24 h period. Non-salted, brine injected or dry salted salmon fillets were surface inoculated with L. monocytogenes and cold-smoked in a pilot plant. L. monocytogenes was reduced from 10(3) to 10-10(2) CFU/cm(2) immediately after cold-smoking. The greatest reductions were observed in dry salted and brine injected fillets as compared to cold-smoking of non-salted fresh fillets. Levels of L. monocytogenes decreased further when the cold-smoked fish was vacuum-packed and stored at 5 degrees C. A similar decline was seen when inoculating brine injected fillets after cold-smoking. High phenol concentrations are a likely cause of this marked growth inhibition. In a commercial production facility, the total viable count of salmon fillets was reduced 10-1000 fold by salting, cold-smoking and process-freezing (a freezing step after smoking and before slicing). The prevalence of L. monocytogenes in the commercial production facility was too low to determine any quantitative effects, however, one of nine samples was positive before processing and none after. Taken together, the processing steps involved in cold-smoking of salmon are bactericidal and reduce, but do not eliminate L. monocytogenes. A persistent strain was no less sensitive to the processing steps than a clinical strain or strain EGD.  相似文献   

3.
The antimicrobial activity of acidified sodium chlorite (ASC) against Listeria monocytogenes in salmon was studied. Raw salmon (whole fish and fillets) inoculated with L. monocytogenes (10(3) CFU/cm2 or 10(4) CFU/g) were washed with ASC solution (50 ppm) for 1 min and stored at -18 degrees C for 1 month (whole salmon) or in ice for 7 days (fillets). L. monocytogenes populations were determined for whole salmon after frozen storage and for fillets on days 1, 3, 5, and 7 of storage. A wash with ASC solution followed by ASC glazing did not reduce L. monocytogenes on the skin of whole salmon during frozen storage. However, the wash resulted in an L. monocytogenes reduction of 0.5 log CFU/g for salmon fillets. The populations of L. monocytogenes in fillets increased slowly during ice storage, but the growth of these populations was retarded by ASC ice. By day 7, the populations were 0.25 log units smaller in fillets stored in ASC ice and 0.62 log units smaller in fillets that had been washed with ASC solution and stored in ASC ice than in control fillets. Treatment with ASC also reduced total plate counts (TPCs) by 0.43 log CFU/cm2 on the skin of whole salmon and by 0.31 log CFU/g in fillets. The TPCs for skin decreased during frozen storage but increased gradually for fillets stored at 5 degrees C or in ice. However, TPCs of ASC-treated samples were lower than those for controls at any point during the study. Washing with ASC solution significantly (P < 0.05) reduced TPCs on the skin of whole salmon and in fillets, as well as L. monocytogenes in fillets. The antimicrobial activity of ASC was enhanced when salmon was washed with ASC solution and stored in ASC ice.  相似文献   

4.
Commercial cured ham formulated with or without potassium lactate and sodium diacetate was inoculated with Listeria monocytogenes and stored to simulate conditions of processing, retail, and home storage. The ham was sliced, inoculated with a 10-strain composite of L. monocytogenes (1 to 2 log CFU/cm2), vacuum packaged, and stored at 4 degrees C to simulate contamination following lethality treatment at processing (first shelf life). After 10, 20, 35, and 60 days of storage, packages were opened, samples were tested, and bags with remaining slices were reclosed with rubber bands. At the same times, portions of original product (stored at 4 degrees C in original processing bags) were sliced, inoculated, and packaged in delicatessen bags to simulate contamination during slicing at retail (second shelf life). Aerobic storage of both sets of packages at 7 degrees C for 12 days was used to reflect domestic storage conditions (home storage). L. monocytogenes populations were lower (P < 0.05) during storage in ham formulated with lactate-diacetate than in product without antimicrobials under both contamination scenarios. Inoculation of ham without lactate-diacetate allowed prolific growth of L. monocytogenes in vacuum packages during the first shelf life and was the worst case contamination scenario with respect to pathogen numbers encountered during home storage. Under the second shelf life contamination scenario, mean growth rates of the organism during home storage ranged from 0.32 to 0.45 and from 0.18 to 0.25 log CFU/cm2/day for ham without and with lactate-diacetate, respectively, and significant increases in pathogen numbers (P < 0.05) were generally observed after 4 and 8 days of storage, respectively. Regardless of contamination scenario, 12-day home storage of product without lactate-diacetate resulted in similar pathogen populations (6.0 to 6.9 log CFU/cm2) (P > 0.05). In ham containing lactate-diacetate, similar counts were found during the home storage experiment under both contamination scenarios, and only in 60-day-old product did samples from the first shelf life have higher (P < 0.05) pathogen numbers than those found in samples from the second shelf life. These results should be useful in risk assessments and for the establishment of "sell by" and "consume by" date labels for refrigerated ready-to-eat meat products.  相似文献   

5.
Smoked salmon can be contaminated with Listeria monocytogenes. It is important to identify the factors that are capable of controlling the growth of L. monocytogenes in smoked salmon so that control measures can be developed. The objective of this study was to determine the effect of salt, a smoke compound, storage temperature, and their interactions on L. monocytogenes in simulated smoked salmon. A six-strain mixture of L. monocytogenes (10(2) to 10(3) CFU/g) was inoculated into minced, cooked salmon containing 0 to 10% NaCl and 0 to 0.4% liquid smoke (0 to 34 ppm of phenol), and the samples were stored at temperatures from 0 to 25 degrees C. Lag-phase duration (LPD; hour), growth rate (GR; log CFU per hour), and maximum population density (MPD; log CFU per gram) of L. monocytogenes in salmon, as affected by the concentrations of salt and phenol, storage temperature, and their interactions, were analyzed. Results showed that L. monocytogenes was able to grow in salmon containing the concentrations of salt and phenol commonly found in smoked salmon at the prevailing storage temperatures. The growth of L. monocytogenes was affected significantly (P < 0.05) by salt, phenol, storage temperature, and their interactions. As expected, higher concentrations of salt or lower storage temperatures extended the LPD and reduced the GR. Higher concentrations of phenol extended the LPD of L. monocytogenes, particularly at lower storage temperatures. However, its effect on reducing the GR of L. monocytogenes was observed only at higher salt concentrations (>6%) at refrigerated and mild abuse temperatures (< 10 degrees C). The MPD, which generally reached 7 to 8 log CFU/g in salmon that supported L. monocytogenes growth, was not affected by the salt, phenol, and storage temperature. Two models were developed to describe the LPD and GR of L. monocytogenes in salmon containing 0 to 8% salt, 0 to 34 ppm of phenol, and storage temperatures of 4 to 25 degrees C. The data and models obtained from this study would be useful for estimating the behavior of L. monocytogenes in smoked salmon.  相似文献   

6.
Cold-smoked (Salmo salar) salmon samples were surface-inoculated with a cocktail of three nisin-resistant strains of L. monocytogenes (PSU1, PSU2 and PSU21) to a level of approximately 5 x 10(2) or 5 x 10(5) CFU/cm2 of salmon surface. The inoculated smoked salmon samples were vacuum-packaged with control film (no nisin) or nisin-coated plastic films and stored at either 4 or 10 degrees C. When the inoculated smoked salmon samples were packaged with film coated with 2000 IU/cm2 of nisin, a reduction of 3.9 log CFU/cm2 (compared with control) was achieved at either temperature for samples inoculated with 5 x 10(2) CFU/cm(2 of L. monocytogenes after 56 (4 degrees C) and 49 (10 degrees C) days of storage while reductions of 2.4 and 0.7 log CFU/cm2 were achieved for samples inoculated with a high level of L. monocytogenes (5 x 10(5) CFU/cm2) after 58 (4 degrees C) and 43 (10 degrees C) days, respectively. For samples packaged in film coated with 500 IU/cm2 of nisin, reductions of 0.5 and 1.7 log CFU/cm2 were achieved for samples inoculated with a low level of L. monocytogenes (5 x 10(2) CFU/cm2) after 56 (4 degrees C) and 49 (10 degrees C) days of storage while reductions of 1.8 and 0.8 log CFU/cm2 were achieved for samples inoculated with high level of L. monocytogenes after 58(4 degrees C) and 43 (10 degrees C) days, respectively. In addition, nisin inhibited the proliferation of background microbiota on smoked salmon in a concentration-dependent manner at both storage temperatures although the bacteriostatic effect was more pronounced at refrigeration temperature. This work highlights the potential for incorporating nisin into plastic films for enhancing the microbial safety of smoked salmon as well as controlling its microbial spoilage.  相似文献   

7.
Transfer of a rifampicin-resistant mutant of Listeria monocytogenes from an inoculated slicing blade to slices of 'gravad' salmon (Salmo salar), and from inoculated salmon fillet to the slicing machine and subsequently to slices of uninoculated fillet was studied. The effect of slicing temperature (0 degrees C, 10 degrees C and room temperature), inoculum level (approx. 3, 5 and 8 log CFU/blade), and attachment time of inoculum to blade (10 min and 2.5 h) were investigated and predictive models of the transfer were produced. In the tests of transfer from inoculated blade (5.9-9.0 log CFU/blade) initially 2.5-5.3 log CFU/g was present on the slices, slowly decreasing to an overall average decrease of 1.6+/-0.2 log CFU/g during slicing of 39 slices; the lowest reduction being 1.3 log CFU/g at 0 degrees C. In tests of transfer from contaminated salmon (7.6+/-0.1 log CFU/fillet) to uninoculated blade and further to uninoculated salmon, the reduction in number of L. monocytogenes in slices was 1.5 log CFU/g during slicing of 39 slices. For example 5.3+/-0.3 log CFU/g was transferred to second slice when the inoculum level was 8.4+/-0.4 log CFU/blade, but clearly (p<0.05) lower total number of L. monocytogenes were transferred to slices when the inoculum level was lower, the temperature was colder or the attachment time was longer. There was a progressive exponential reduction in the quantity of L. monocytogenes transferred and, based on statistical parameters, an exponential model (y=ae((-x/b))) fit the data from different test conditions and was suitable for predicting an expected number of L. monocytogenes on the salmon slices. Based on the predicted values, the logarithmic reduction in number of L. monocytogenes in slices was highest at room temperature with an inoculum level of 8.4+/-0.4 log CFU/blade (attachment time 10 min); the other test conditions differed significantly from this (p<0.05). Despite statistically significant differences, in all test conditions the number of bacteria were predicted to reduce quite rapidly (i.e. after slicing of the fourth fillet) to <1 log CFU/g, though this prediction was an extrapolation after 39 slices. The predictive models described herein can assist salmon processors and regulatory agencies in assessing cross-contamination from contaminated slicing machines to product and in designing risk management strategies.  相似文献   

8.
This study evaluated the efficacy of ozone, chlorine, and hydrogen peroxide to destroy Listeria monocytogenes planktonic cells and biofilms of two test strains, Scott A and 10403S. L. monocytogenes was sensitive to ozone (O3), chlorine, and hydrogen peroxide (H2O2). Planktonic cells of strain Scott A were completely destroyed by exposure to 0.25 ppm O3 (8.29-log reduction, CFU per milliliter). Ozone's destruction of Scott A increased when the concentration was increased, with complete elimination at 4.00 ppm O3 (8.07-log reduction, CFU per chip). A 16-fold increase in sanitizer concentration was required to destroy biofilm cells of L. monocytogenes versus planktonic cells of strain Scott A. Strain 10403S required an ozone concentration of 1.00 ppm to eliminate planktonic cells (8.16-log reduction, CFU per milliliter). Attached cells of the same strain were eliminated at a concentration of 4.00 ppm O3 (7.47-log reduction, CFU per chip). At 100 ppm chlorine at 20 degrees C, the number of planktonic cells of L. monocytogenes 10403S was reduced by 5.77 log CFU/ml after 5 min of exposure and by 6.49 log CFU/ml after 10 min of exposure. Biofilm cells were reduced by 5.79 log CFU per chip following exposure to 100 ppm chlorine at 20 degrees C for 5 min, with complete elimination (6.27 log CFU per chip) after exposure to 150 ppm at 20 degrees C for 1 min. A 3% H2O2 solution reduced the initial concentration of L. monocytogenes Scott A planktonic cells by 6.0 log CFU/ml after 10 min of exposure at 20 degrees C, and a 3.5% H2O2 solution reduced the planktonic population by 5.4 and 8.7 log CFU/ml (complete elimination) after 5 and 10 min of exposure at 20 degrees C, respectively. Exposure of cells grown as biofilms to 5% H2O2 resulted in a 4.14-log CFU per chip reduction after 10 min of exposure at 20 degrees C and in a 5.58-log CFU per chip reduction (complete elimination) after 15 min of exposure.  相似文献   

9.
The surfaces of ready-to-eat meats are susceptible to postprocessing contamination by Listeria monocytogenes. This study examined and modeled the growth characteristics of L. monocytogenes on cooked ham treated with lactic acid solutions (LA). Cooked ham was inoculated with L. monocytogenes (ca. 10(3) CFU/g), immersed in 0, 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0% LA for 30 min, vacuum packaged, and stored at 4, 8, 12, and 16°C. LA immersion resulted in <0.7 log CFU/g immediate reduction of L. monocytogenes on ham surfaces, indicating the immersion alone was not sufficient for reducing L. monocytogenes. During storage, no growth of L. monocytogenes occurred on ham treated with 1.5% LA at 4 and 8°C and with 2% LA at all storage temperatures. LA treatments extended the lag-phase duration (LPD) of L. monocytogenes and reduced the growth rate (GR) from 0.21 log CFU/day in untreated ham to 0.13 to 0.06 log CFU/day on ham treated with 0.5 to 1.25% LA at 4°C, whereas the GR was reduced from 0.57 log CFU/day to 0.40 to 0.12 log CFU/day at 8°C. A significant extension of the LPD and reduction of the GR of L. monocytogenes occurred on ham treated with >1.25% LA. The LPD and GR as a function of LA concentration and storage temperature can be satisfactorily described by a polynomial or expanded square-root model. Results from this study indicate that immersion treatments with >1.5% LA for 30 min may be used to control the growth of L. monocytogenes on cooked meat, and the models would be useful for selecting LA immersion treatments for meat products to achieve desired product safety.  相似文献   

10.
The objective of this study was to evaluate the survival and growth of acid-adapted and nonadapted Listeria monocytogenes inoculated onto fresh beef subsequently treated with acid or nonacid solutions. Beef slices (2.5 by 5 by 1 cm) from top rounds were inoculated with acid-adapted or nonadapted L. monocytogenes (4.6 to 5.0 log CFU/cm2) and either left untreated (control) or dipped for 30 s in water at 55 degrees C, water at 75 degrees C, 2% lactic acid at 55 degrees C, or 2% acetic acid at 55 degrees C. The beef slices were vacuum packaged and stored at 4 or 10 degrees C and were analyzed after 0, 7, 14, 21, and 28 days of storage. Dipping in 75 degrees C water, lactic acid, and acetic acid resulted in immediate pathogen reductions of 1.4 to 2.0, 1.8 to 2.6, and 1.4 to 2.4 log CFU/cm2, respectively. After storage at 10 degrees C for 28 days, populations of L. monocytogenes on meat treated with 55 degrees C water increased by ca. 1.6 to 1.8 log CFU/cm2. The pathogen remained at low population levels (1.6 to 2.8 log CFU/cm2) on acid-treated meat, whereas populations on meat treated with 75 degrees C water increased rapidly, reaching levels of 3.6 to 4.6 log CFU/cm2 by day 14. During storage at 4 degrees C, there was no growth of the pathogen for at least 21 days in samples treated with 55 and 75 degrees C water, and periods of no growth were longer for acid-treated samples. There were no differences between acid-adapted and nonadapted organisms across treatments with respect to survival or growth. In conclusion, the dipping of meat inoculated with L. monocytogenes into acid solutions reduced and then inhibited the growth of the pathogen during storage at 4 and 10 degrees C, while dipping in hot water allowed growth despite initial reductions in pathogen contamination. The results of this study indicate a residual activity of acid-based decontamination treatments compared with water-based treatments for refrigerated (4 degrees C) or temperature-abused (10 degrees C) lean beef tissue in vacuum packages, and these results also indicate that this activity may not be counteracted by prior acid adaptation of L. monocytogenes.  相似文献   

11.
The effects of acidified sodium chlorite (ASC) against Listeria monocytogenes on the surface of cooked roast beef were investigated. L. monocytogenes, strain V7, serotype 1/2a, was inoculated at numbers of 6.0 log CFU/g onto 5-g cubes of cooked regular or spicy roast beef. The samples were allowed to air dry for 1 h. The cooked roast beef samples were dipped into ASC or sprayed with ASC solutions of 250, 500, 750, or 1,000 ppm, then placed in bags with or without a vacuum and refrigerated at 4 degrees C. L. monocytogenes counts were determined after 0, 7, 14, 21, and 28 days of storage by spread plating roast beef samples onto Oxford agar plates that were incubated at 37 degrees C for 48 h. At day 28, the number of L. monocytogenes on the > or = 500 ppm ASC-treated spicy roast beef samples had count reductions that were >4.0 log CFU/g, whereas the same concentrations of ASC-treated regular roast beef samples had approximately a 2.5 log CFU/g reduction in L. monocytogenes counts when compared with the untreated samples. No significant differences (P > 0.05) were observed in L. monocytogenes counts between the vacuum- or nonvacuum-packaged ASC-treated cooked roast beef samples. Sensory evaluation showed no significant differences (P > 0.05) between ASC-treated and untreated roast beef. ASC can be used as a processing aid in the form of a dip or spray treatment to control L. monocytogenes on the surface of cooked roast beef.  相似文献   

12.
This study examined bacterial recovery on sliced cooked ham that was inoculated with Listeria monocytogenes, treated by high pressure processing (HPP) and then stored at 10 degrees C for 70 days. The number of L. monocytogenes on the ham inoculated with 5 log(10) CFU/g was initially reduced by HPP at 500 MPa for 10 min to below the detectable level (10 CFU/g). However, the bacterial count gradually increased during storage, and exceeded the initial inoculum level at the end of the 70-day period, having risen by 7-8 log(10) CFU/g. A novel predictive model was therefore developed to estimate the recovery of L. monocytogenes during storage after HPP. Recovery of L. monocytogenes was defined as the detection of >10(2) CFU/g bacteria, in view of the relevant food safety objectives of L. monocytogenes. At each 14-day sampling session, the ham was scored as either 1 or 0 indicating bacterial recovery or no bacterial recovery, respectively. The data were then subjected to a simple linear logistic regression model, which provided a good fit as indicated by the performance statistics. Using this model, we estimated the minimum HPP conditions necessary for the required storage periods. Additionally, as the developed model was based on logistic regression, the probability of the recovery of L. monocytogenes during storage after HPP was estimated. Our model not only calculated the appropriate shelf life and process conditions, but also provided a method for evaluating the risk of the recovery of pathogenic bacteria during storage.  相似文献   

13.
In this study, we evaluated the antimicrobial effects of different levels of a potassium lactate (PL) plus sodium diacetate (SDA) mixture against the growth and survival of Listeria monocytogenes Scott A inoculated onto smoked salmon stored at 4, 10, and -20 degrees C. The effect of freezing stress on the growth kinetics of L. monocytogenes Scott A on smoked salmon at 4 and 10 degrees C was also investigated. The use of PL+SDA at all tested levels (1.5, 3.3, and 5% of a 60% commercial solution of PURASAL P Opti.Form 4) completely inhibited the growth of L. monocytogenes Scott A on smoked salmon stored at 4 degrees C during 32 days of storage. It also delayed the growth of L. monocytogenes Scott A on smoked salmon stored at 10 degrees C for up to 11 days, but a listeriostatic effect was observed only with 5% PURASAL P Opti.Form 4 at 10 degrees C after 11 days. Addition of PL+SDA at all tested levels decreased the surviving populations of L monocytogenes Scott A on smoked salmon during 10 months of frozen storage at -20 degrees C. Freezing stress significantly (P < 0.001) extended the lag time and delayed the growth of L. monocytogenes Scott A at both 4 and 10 degrees C. However, the effect of freezing stress was more significant at 4 degrees C than at 10 degrees C, indicating the importance of temperature control of smoked salmon during the retail storage period.  相似文献   

14.
Protein isolates from soybean and chickpea, as well as their methylated esters, were tested for their inhibitory action against the propagation of pathogenic bacteria in raw milk during its storage either at room temperature or under refrigeration. Raw milk was inoculated with a mixed culture of Listeria monocytogenes Scott A and Salmonella enterica serovar Enteritidis strain PT4 at ca. 2 log CFU ml?1. Aerobic plate count, coliform count, and presumptive E. coli in raw milk treated with esterified legume proteins were inhibited by 2 to 3 log relative to a control after 6 to 8 days of storage at 4°C. At room temperature, bacterial populations (aerobic plate count, coliform count, and presumptive E. coli) in raw milk treated with esterified legume proteins were inhibited by ca. 1.5 to 1.6 log relative to the control after 12 h. Supplementation of raw milk with esterified soybean protein could significantly inhibit the counts of the two inoculated pathogens (L. monocytogenes Scott A and Salmonella Enteritidis PT4), which were initially inoculated at ca. 2 log CFU ml?1, by ca. 2.4 log and 1.6 log CFU ml?1, respectively, on day 8 of storage under cold conditions. Corresponding reductions amounting to 2.7 and 1.8 log CFU ml?1 were observed after 12 h of storage at room temperature. Supplementation of raw milk with esterified soybean protein (0.5%) reduced the maximum level of titratable acidity to 0.21 and maintained the pH level at 6.4 after 8 days of storage under cold conditions as compared with 4 days for untreated raw milk. Similar results were observed when raw milk was stored at room temperature for 10 h.  相似文献   

15.
Cells of Listeria monocytogenes exposed at 4 degrees C to 1% solutions of two alkaline cleaners or alkali-adapted in tryptose phosphate broth (pH 10.0) at 37 degrees C for 45 min, followed by 4 degrees C for 48 h, were inoculated onto beef frankfurters containing high fat (16 g) and high sodium (550 mg) or low fat (8 g) and low sodium (250 mg) per 57-g serving. Frankfurters were surface inoculated (2.0 log10 CFU/g), vacuum packaged, stored at -20, 4, or 12 degrees C, and analyzed for populations of L. monocytogenes at 2-day to 2-week intervals. Populations did not change significantly on frankfurters stored at -20 degrees C for up to 12 weeks. After storage at 4 degrees C for 6 weeks (I week before the end of shelf life), populations of control cells and cells exposed to alkaline cleaners were ca. 6.0 log10 CFU/g of low fat, low sodium (LFLS) frankfurters and ca. 3.5 log10 CFU/g of high fat, high sodium (HFHS) frankfurters. Growth of alkali-adapted cells on both types of frankfurters was retarded at 4 degrees C. Growth of L. monocytogenes on frankfurters stored at 12 degrees C was more rapid than at 4 degrees C, but a delay in growth of alkali-adapted cells on HFHS and LFLS frankfurters was evident during the first 9 and 6 days, respectively. Alkali-adapted cells had a significantly (P < or = 0.05) lower logistic D59 degrees C-value (decimal reduction time) than alkaline cleaner-exposed cells, but the D59 degrees C-value was not different from that of control cells. Cells exposed to a nonbutyl alkaline cleaner, and then heated in LFLS frankfurter exudates, had a significantly lower D62 degrees C-value than cells that had been exposed to some of the other treatments. Growth characteristics of L. monocytogenes inoculated onto the surface of frankfurters may be altered by previous exposure to alkaline environments. Differences in growth characteristics of L. monocytogenes on HFHS versus LFLS beef frankfurters stored at refrigeration temperatures indicate that composition influences the behavior of both alkaline-stressed and control cells.  相似文献   

16.
Minimally processed vegetables are in demand, because they offer convenience to consumers. However, these products are often unsafe because of possible contamination with pathogens, such as Salmonella, Escherichia coli O157:H7, and Shigella species. Therefore, this study was carried out to optimize the radiation dose necessary to ensure the safety of precut carrot and cucumber. Decimal reduction doses (D-values) of Salmonella Typhimurium MTCC 98 were ca. 0.164 kGy in carrot samples and 0.178 kGy in cucumber samples. D-values of Listeria monocytogenes were determined to be 0.312 and 0.345 kGy in carrot and cucumber samples, respectively. Studies of inoculated, packaged, minimally processed carrot and cucumber samples showed that treatment with a 1-kGy dose of gamma radiation eliminated up to 4 log CFU/g of Salmonella Typhimurium and 3 log CFU/g of L. monocytogenes. However, treatment with a 2-kGy dose was necessary to eliminate these pathogens by 5 log CFU/g. Storage studies showed that both Salmonella Typhimurium and L. monocytogenes were able to grow at 10 degrees C in inoculated control samples. Neither of these pathogens could be recovered from radiation-processed samples after storage for up to 8 days.  相似文献   

17.
To validate how packaging and storage reduces Listeria monocytogenes on whole-muscle beef jerky and smoked pork and beef sausage sticks, four packaging systems (heat sealed [HS] without vacuum, heat sealed with oxygen scavenger, nitrogen flushed with oxygen scavenger [NFOS], and vacuum) and four ambient temperature storage times were evaluated. Commercially available whole-muscle beef jerky and smoked pork and beef sausage sticks were inoculated with a five-strain L. monocytogenes cocktail, packaged, and then stored at 25.5 °C until enumerated for L. monocytogenes at 0, 24, 48, and 72 h and 30 days after packaging. The interaction of packaging and storage time affected L. monocytogenes reduction on jerky, but not on sausage sticks. A >2-log CFU/cm(2) reduction was achieved on sausage sticks after 24 h of storage, regardless of package type, while jerky had <2-log reductions for all packaging types. At 48 h, log reductions were similar (P. 0.05) for all types of jerky packaging, ranging from 1.26 to 1.72 log CFU/cm(2); however, at 72 h, mean L. monocytogenes reductions were >2 log CFU/cm(2), except for NFOS (1.22-log CFU/cm(2) reduction). Processors could package beef jerky in HS packages with oxygen scavenger or vacuum in conjunction with a 24-h holding time as an antimicrobial process to ensure a >1-log CFU/cm(2) L. monocytogenes reduction or use a 48-h holding time for HS- or NFOS-packaged beef jerky. A >3-log CFU/cm(2) mean reduction was observed for all beef jerky and sausage stick packaging systems after 30 days of 25.5 °C storage.  相似文献   

18.
Nisin or nisin combined with EDTA was used to treat fresh beef. Beef cubes (2.5 by 2.5 by 2.5 cm) that were inoculated with approximately 7 log CFU/ml of Listeria monocytogenes Scott A or Escherichia coli O157:H7 505 B were dipped in the following solutions: (i) H2O, (ii) HCl, (iii) nisin, (iv) EDTA, or (v) nisin combined with EDTA, respectively, for 10 min each, with an exception of one set of control beef samples without treatment. Beef samples were then drip-dried for 15 min, vacuum packaged, and stored at 4 degrees C for up to 30 days. The pH on beef after different treatments was not a key factor in preventing bacterial growth. Treatment with nisin or with nisin combined with EDTA reduced the population of L. monocytogenes by 2.01 and 0.99 log CFU/cm2 as compared to the control, respectively, under the conditions of vacuum package and storage at 4 degrees C for up to 30 days. However, the effect of nisin and nisin combined with EDTA against E. coli O157:H7 505 B was marginal at 1.02 log CFU/cm2 and 0.8 log CFU/cm2 reductions, respectively.  相似文献   

19.
Attachment and survival of Listeria monocytogenes on external surfaces (rind) of inoculated cantaloupe, resistance of the surviving bacteria to chlorine or hydrogen peroxide treatments, transfer of the pathogen from unsanitized and sanitized rinds to fresh-cut tissues during cutting and growth, and survival of L. monocytogenes on fresh-cut pieces of cantaloupe were investigated. Surface treatment with 70% ethanol to reduce the native microflora on treated melon, followed by immersion in a four-strain cocktail of L monocytogenes (10(8) CFU/ml) for 10 min, deposited 4.2 log10 CFU/cm2 and 3.5 log10 CFU/cm2 of L monocytogenes on treated and untreated cantaloupe rinds, respectively. L. monocytogenes survived on the treated or untreated cantaloupe rinds for up to 15 days during storage at 4 and 20 degrees C, but populations declined by approximately 1 to 2 log10 CFU/cm2. Fresh-cut pieces prepared from inoculated whole cantaloupes stored at 4 degrees C for 24 h after inoculation were positive for L. monocytogenes. Washing inoculated whole cantaloupes in solutions containing 1,000 ppm of chlorine or 5% hydrogen peroxide for 2 min at 1 to 15 days of storage at 4 degrees C after inoculation resulted in a 2.0- to 3.5-log reduction in L. monocytogenes on the melon surface. Fresh-cut pieces prepared from the sanitized melons were negative for L. monocytogenes. After direct inoculation onto fresh-cut pieces, L. monocytogenes survived, but did not grow, during 15 days of storage at 4 degrees C. Growth was evident by 4 h of storage at 8 and 20 degrees C. It is concluded that sanitizing with chlorine or hydrogen peroxide has the potential to reduce or eliminate the transfer of L. monocytogenes on melon surfaces to fresh-cut pieces during cutting.  相似文献   

20.
This research was conducted to study the growth of Listeria monocytogenes inoculated on frankfurters stored at different conditions as a basis for a safety-based consume by shelf life date label. Three L. monocytogenes strains were separately inoculated at 10 to 20 CFU/cm2 onto frankfurters that were previously formulated with or without high pressure and with or without added 2% potassium lactate (PL) and 0.2% sodium diacetate (SD). Inoculated frankfurters were air or vacuum packaged; stored at 4, 8, or 12 degrees C; and L. monocytogenes and psychrotrophic plate counts were determined for 90, 60, and 45 days, respectively, or until the stationary phase was reached. The data (log CFU per square centimeter versus time) were fitted using the Baranyi-Roberts model to determine maximum growth rates and lag-phase time. The maximum growth rates and the lag time under each growth condition were used to calculate the time to reach 100-fold the initial Listeria population. In frankfurters lacking PL and SD, the count of all strains increased by 2 log after 18 to 50 days at 4 degrees C and 4 to 13 days at 8 degrees C. The growth was inhibited at 4 and 8 degrees C in frankfurters containing PL and SD, but one ribotype was capable of growing, with the time to reach 100-fold the initial Listeria population ranging from 19 to 35 days at 12 degrees C. In most cases, the time to reach 100-fold the initial Listeria population of L. monocytogenes was significantly longer in vacuum-packaged frankfurters as compared with air-packaged samples. Inclusion of PL and SD also inhibited the growth of psychrotrophs, but at all temperatures the psychrotrophic plate counts were greater than 4 log CFU/cm2 at the end of the experiments. These results indicated that despite the use of antimicrobials, certain L. monocytogenes strains could be capable of growing under storage-abuse conditions. Growth kinetics data could be useful for establishing a shelf life date label protocol under different handling scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号