首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiaosi Qi  Yu Deng  Youwei Du 《Carbon》2010,48(2):365-6792
High purity (99.21 wt.%) helical carbon nanotubes (HCNTs) were synthesized in large quantity over Fe nanoparticles (fabricated using a coprecipitation/hydrogen reduction method) by acetylene decomposition at 450 °C. Field-emission and transmission electron microscope images reveal that the selectivity to HCNTs (with two or three coiled nanotubes connected to a catalyst nanoparticle) is up to ca. 93%. The yield of HCNTs (as defined by the equation: ) is ca. 7474% in a run of 6 h, higher than any of those reported in the literature. If hydrogen was introduced during acetylene decomposition for ca. 30 min, the HCNTs mainly consisted of two coiled tubes connected to a catalyst nanoparticle, and carbon nanocoils (CNCs) of different structures were generated. If hydrogen was present throughout acetylene decomposition, worm-like carbon nanotubes (CNTs) as well as CNCs were produced in large quantities. Because the HCNTs and worm-like CNTs are attached to Fe nanoparticles, the nanomaterials are high in magnetization.  相似文献   

2.
The synthesis of carbon nanofibers was carried out by catalytic decomposition of ethylene in presence of hydrogen. Bimetallic catalysts, e.g. Fe-Cu or Ni-Cu, were synthesized by coprecipitation, reduction-precipitation and reverse microemulsion techniques and were proven to have a strong influence on the morphology of the nanofibers. The best results in terms of synthesis homogeneity were obtained by supporting the bimetallic catalyst on a high surface area silica support by the “incipient wetness” method. The hydrogen storage capacity of carbon nanofibers was tested in a custom made Sievert apparatus operating up to 160 bar and 450 °C. Several “in situ” activation procedures were experimented, however according to our data carbon nanofibers do not seem a suitable candidate for hydrogen storage. With the purpose of promoting a “spillover” function, 2 wt.% Pd-doped nanofibers were prepared. After loading at 77 bar, a hydrogen storage of 1.38 ± 0.30 wt.% was measured at room temperature.  相似文献   

3.
Metal nanoparticles were synthesized continuously in supercritical methanol (scMeOH) without using reducing agents at a pressure of 30 MPa and at various reaction temperatures ranging 150-400 °C. Wide angle X-ray diffraction (WAXD) analysis revealed that metallic nickel (Ni) nanoparticles were synthesized at a reaction temperature of 400 °C while mixtures of nickel hydroxide (α-Ni(OH)2) and metallic Ni were produced at lower reaction temperatures of 250-350 °C. In contrast, metallic silver (Ag) nanoparticles were produced at reaction temperatures above 150 °C while metallic cupper (Cu) nanoparticles were produced at reaction temperatures above 300 °C. Mixtures of copper oxide (CuO and Cu2O) and metallic Cu were produced at lower reaction temperatures of 250 °C. Scanning electron microscopy (SEM) showed that the particles size and morphology changed drastically as the reaction temperature increased. The average diameters of Ni, Cu and Ag particles synthesized at 400 °C were 119 ± 19 nm, 240 ± 44 nm, and 148 ± 32 nm, respectively. The scMeOH acted both as a reaction medium and a reducing agent. A possible reduction mechanism in scMeOH is also presented.  相似文献   

4.
This paper presents the growth evolutions in terms of the structure, growth direction and density of rapid grown carbon nanotube (CNT) forests observed by scanning and transmission electron microcopies (SEM/TEM). A thermal CVD system at around 700 °C was used with a catalyst of Fe films deposited on thin alumina (Al2O3) supporting layers, a very fast raising time to the growth temperature below 25 °C/s, and a carbon source gas of acetylene diluted with hydrogen and nitrogen without water vapor. Activity of Fe catalyst nanoparticles was maintained for 5 min during CVD process, and it results in CNT forests with heights up to 0.6 mm. SEM images suggest that the disorder in CNT alignment at the initial stage of CNTs plays a critical role in the formation of continuous CNT growth. Also, the prolonged heating process leads to increased disorder in CNT alignment that may be due to the oxidation process occurring at the Fe nanoparticles. TEM images revealed that both double- and few-walled CNTs with diameters of 5-7 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. The number of experiments at the same conditions showed a very good repeatability and reproducibility of rapid grown CNT forests.  相似文献   

5.
Multi-walled carbon nanotubes (MWCNTs) have been synthesized from novel butadiynyl-ferrocene-containing compounds. The formation of the MWCNTs occurs in the solid phase at ambient pressure in a typical high-temperature furnace. Heat treatment of the various compounds to temperatures up to 1300 °C under atmospheric pressure resulted in the decomposition of the ferrocene units and the formation of Fe nanoparticles in the polymeric-to-carbon nanoparticle-to-carbon nanotube compositions. The Fe atoms, clusters, and/or nanoparticles are the key to the formation of the carbon nanotubes. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies show the presence of a large quantity of MWCNTs in the carbonaceous solid residue.  相似文献   

6.
O.C. Carneiro  R.T.K. Baker 《Carbon》2005,43(11):2389-2396
The growth of carbon nanofibers from Fe-Cu catalyzed decomposition of CO/C2H4/H2 mixtures at temperatures over the range 500-650 °C has been investigated. Based on analysis of the gas phase and solid products it is apparent that co-adsorption of CO and C2H4 induces major perturbations in the surfaces of the bimetallic catalyst particles. These features are reflected in an increase in the yield of solid carbon and subtle changes in the structural characteristics of the carbon nanofibers. Optimum performance with respect to the yield of carbon nanofibers is found for iron-rich particles treated in CO/C2H4/H2 (1:3:1) at 600 °C. Deactivation of the catalyst is observed to occur with high Cu concentrations and at reaction temperatures in excess of 600 °C. It is suggested that under these conditions the surface of the particles in contact with the reactant gas mixture become enriched in Cu, which does not possess the ability to dissociatively chemisorb either CO or C2H4.  相似文献   

7.
Monodispersed Fe-V-O nanoparticles were prepared by a liquid-phase synthesis to be used as catalysts for carbon nanotube (CNT) growth. Vertically aligned, dense CNTs have been grown from the highly active Fe-V-O nanoparticles by chemical vapor deposition. Diameter distribution of CNTs (3.7 ± 0.6 nm) was consistent with that of the original nanoparticles (3.1 ± 0.5 nm), and the value was smaller than those of other reported vertically aligned CNTs from as-prepared nanoparticles. TEM study showed that the CNTs consisted mainly of double-walled CNTs (single: 14%, double: 74%, and triple: 12%). The CNT diameter increased to 4.4 ± 0.8 nm as the growth temperature was increased from 810 to 870 °C. Energy dispersive X-ray spectroscopy of nanoparticles before and after the CNT growth revealed that the V content decreased from 7.2 to 2.7 at.%, suggesting that the segregation of Fe and V played an important role for the high activity of the Fe-V-O nanoparticles.  相似文献   

8.
Using thermogravimetry (TG) under conditions that minimize inhibition by the hydrogen produced, the intrinsic catalytic rates of skeletal Ni, pure and alloyed with solute metals Fe, Co, or Cu, were evaluated in methane decomposition to carbon nanofibers. In “standard” tests, i.e., after pre-reduction in H2 and exposure to CH4 directly at 450 °C, several catalysts reached stable activities exceeding 4 mg C/mg cat./h, comparable with literature values obtained at 500 °C or above. TG evidence is presented for partial bulk carburization of Ni in CH4 below 350 °C, which leads to substantially increased coking rates. TEM evidence supports the view that carburization promotes catalyst particle disintegration, thereby inducing faster and more stable nanofiber growth. Irregularities in alloy response to carburization are interpreted in terms of the stability of the respective mixed-metal carbides. TEM also shows that alloying changes the metal nanocrystallite shape (habit), with consequences for the carbon nanofiber structure. Evidence for the easy dissociation of CH4 is corroborated by direct catalyst activation in the absence of H2. Reduction begins in pure hydrocarbon around 300 °C and leads to coking activities at 450 °C comparable to those for samples pre-reduced in H2. Skeletal metal catalysts offer distinct advantages in low-temperature natural gas conversion.  相似文献   

9.
Hui Zhang  Huiyuan Xu  Jun Zhou 《Fuel》2010,89(10):3127-922
Plasma-assisted Fe-Cu/SiO2 catalysts were prepared by impregnation technique and characterized by X-ray diffraction (XRD), nitrogen adsorption and desorption isotherms, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (H2-TPR) techniques. Catalytic performances for carbon monoxide hydrogenation to higher alcohols were carried out in a fixed-bed reactor at the conditions of T = 300 °C, P = 5 MPa, H2/CO = 2, GHSV = 6000 ml/gcat h. Plasma-promoted Fe-Cu bimetal catalyst (FeCuSi-PC) possessed much better catalytic performances than those of conventional sample in the selective hydrogenation of carbon monoxide. XRD and XPS analysis suggested that the plasma assistance in the catalyst preparation remarkably diminished the particle size, improved the catalyst dispersion, and issued an exposure of more copper and iron species on the catalyst surface. The mechanism of plasma on catalyst crystallize size was also discussed.  相似文献   

10.
A nanostructured hybrid consisting of a high-density and uniform assembly of gold nanoparticles (AuNPs) on carbon nanotubes (CNTs) was prepared using easy methods. The pyrolysis of iron(II) phthalocyanine (FePc) on a Si substrate under an atmosphere of hydrogen/argon was used to produce multiwalled carbon nanotubes (MWCNTs) with 12 nm in diameter and 4 μm in length. Then, Au nanocolloid solution, which contained dodecanethiol-capped Au nanoparticles synthesized by solution chemical method, was deposited on the synthesized CNT array and heated at 300 °C for 1 h under Ar. The synthesis temperature of CNT governs the AuNP-CNT hybrid structure and surface nitrogen concentration from decomposition of FePC. CNTs synthesized at 800 °C exhibit the finest particle size and most homogeneous dispersity of assembled AuNPs in comparison to hybrids whose CNTs are synthesized at other temperatures. These features are considered to correlate with the surface nature of the grown CNT; good dispersity of AuNPs on CNT results from interaction between the thiolate molecules capped on the AuNPs and the N atoms doped into the grown CNT. Assembling AuNPs to CNT contributes the electrical conductivity enhancement of the CNT hybrid array.  相似文献   

11.
Haibo Li 《Carbon》2010,48(2):464-6256
A Cu@carbon (Cu@C) spherical core-shell structure has been synthesized from carbonaceous matrices containing embedded copper particles by thermal treatment at 600 °C under an argon atmosphere. The matrices are prepared by reducing CuCl2 with vitamin C (VC) in the existence of polyacrylamide (PAM) at 180 °C, accompanied by the partial carbonization of VC. It is found that small Cu nanoparticles with diameters of ∼3 nm homogeneously disperse in the carbonaceous matrices. Subsequent thermal treatment at 600 °C under an argon atmosphere leads to the diffusion of these Cu nanoparticles and further carbonization of carbonaceous matrices to form a Cu@C core-shell structure. The core-shell ratio can be controlled by varying the dose of CuCl2, VC, or PAM. It is found that the carbon shell can effectively shield the metallic Cu core from oxidation in the mixed solution of dilute hydrogen peroxide and nitric acid.  相似文献   

12.
A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.  相似文献   

13.
Yan Yan 《Carbon》2007,45(11):2209-2216
Graphitic carbon nanostructures were prepared in solution by two methods: solvothermal synthesis and hot injection. Small carbon nanoparticles with uniform diameters of 3-6 nm, carbon onion particles with larger diameters of 30-80 nm, and carbon nanoropes with a length of hundreds of nm and a width of 3-20 nm, were formed using commercial mesophase pitches as a carbon precursor through solution-phase synthesis below 200 °C. In the solvothermal synthesis, organic-organic assemblies of aromatic molecules from the pitches could be constrained into different stacking arrangements directed by varying the concentration of the block copolymer P123 template in toluene solution at 200 °C. In the hot injection method, when oleic acid was used as a solvent at 180 °C, the assemblies of the aromatic building blocks were controlled by varying the reaction time (5-30 min) or the concentration of H2SO4 catalyst (0.015-0.061 mol L−1) in the nucleation and growth process.  相似文献   

14.
Multi-walled carbon nanotubes have been synthesized through the solid-phase transformation of metal-containing glass-like carbon nanoparticles by heating at temperatures of 800-1000 °C. From microscopic observations on the morphologies and structures of the nanotubes and various intermediate objects, it is shown that the transformation occurs by nanoparticles first assembling into wire-like nanostructures, and then transforming into nanotubes via particle-particle coalescence and structural crystallization.  相似文献   

15.
Seung-Yup Lee 《Carbon》2005,43(13):2654-2663
The synthesis of carbon nanotubes (CNTs) through the catalytic decomposition of acetylene was carried out over gold nanoparticles supported on SiO2-Al2O3. Monodispersed gold nanoparticles with 1.3-1.8 nm in diameter were prepared by the liquid-phase reduction method with dodecanethiol as protective agent. The carbon products formed after acetylene decomposition consist of multi-walled carbon nanotubes with layered graphene sheets, carbon nanofilaments (CNFs), and carbon nanoparticles encapsulating gold particles. The observed CNTs have outer diameters of 13-25 nm under 850 °C. The influence of several reaction parameters, such as kind of carriers, reaction temperature, gas flow rate, was investigated to search for optimum reaction conditions. The CNTs were observed at a relatively low temperature (550 °C). The silica-alumina carrier showed higher activity for the formation of CNTs than others used in the screening test. With increasing temperature, the CNTs showed cured structures having thick diameters and inside compartments. When Au content on the support was over 5 wt.%, the gold nanoparticles coagulated to form large ones >20 nm in diameter and became encapsulated with graphene layers after decomposition of acetylene.  相似文献   

16.
A series of coconut shell activated carbon catalysts, modified by metal oxides, were prepared by an ultrasound-assisted incipient wetness method for the removal of methyl mercaptan (CH3SH). The catalysts were investigated using XRD, BET, XPS, TEM and TA.The results showed that the catalyst combined with 2 wt% Fe loading and iron (Fe): copper (Cu) (mole ratio) 10 : 3, and calcination at 300 °C had a superior removal efficiency. The high activity could be attributed to the generation of highly dispersed Fe-Cu nanocomposites. The results revealed that calcination temperature not only influenced the chemical states and nanocomposite size of iron and copper, but also affected the pore structures of the catalysts. Compared with Fe/AC, the interaction between the iron and copper oxides resulted in smaller nanoparticles and high dispersion for Fe-Cu/AC. Product analysis results suggested dimethyl disulfide, metal methanesulfonates and methyl thiolates were the oxidation products which adsorbed on the activated carbon.  相似文献   

17.
Hydrogen adsorption on nitrogen-doped carbon xerogels   总被引:1,自引:0,他引:1  
Kyung Yeon Kang  Jae Sung Lee 《Carbon》2009,47(4):1171-1180
Nitrogen-doped (1.2-4.5 wt%) carbon xerogels were synthesized from carbonization of resorcinol-formaldehyde polymer in an ammonia atmosphere at various temperatures. The textural properties and the chemical nature of nitrogen in the nitrogen-doped carbon xerogels were analyzed by Ar adsorption/desorption isotherms and X-ray photoelectron spectroscopy, respectively. The maximum hydrogen uptakes were measured to be 3.2 wt% at −196 °C and 0.28 wt% at 35 °C. Hydrogen adsorption had a stronger correlation with specific surface area than nitrogen content at the low temperature of −196 °C. At the higher temperature of 35 °C, optimal nitrogen doping enhanced hydrogen adsorption by electronic modification of carbon in agreement with previous theoretical predictions.  相似文献   

18.
Partially Fe filled multi-walled carbon nanotubes (MWCNTs) were grown by chemical vapor deposition with propane at 850 °C using a simple mixture of iron (III) acetylacetonate (Fe(acac)3) powder and conventional photoresist. Scanning electron microscopy revealed that catalytic nanoparticles with an average diameter of 70 nm are formed on the Si substrate which governs the diameter of the MWCNTs. Transmission electron microscopy shows that the nanotubes have a multi-walled structure with partial Fe filling. A site-selective growth of partially Fe filled MWCNTs is achieved by a simple photolithographic route.  相似文献   

19.
Diameter-controlled single-wall carbon nanotubes (SWCNTs) have been synthesized using Co, Fe/Co and Rh/Pd alloy nanoparticles trapped within the one-dimensional channels of a mesoporous materials (Folded Sheets Mesoporous material: FSM-16) by catalyst-supported chemical vapor deposition (CCVD) using ethanol as carbon source at 973-1173 K. The SWCNTs synthesized are characterized by transmission electron microscopy, Raman spectroscopy and photoluminescence spectroscopy. The yield, diameter distribution and quality of the SWCNTs strongly depend on the reaction temperature during CCVD. The product synthesized at 1173 K contains only SWCNTs, in marked contrast to those synthesized at lower temperatures. As the reaction temperature decreases, the relative abundance of multi-wall carbon nanotubes against SWCNTs significantly increases, whereas the mean diameter of SWCNTs increases as reaction temperature increases. The results show that a careful control of the reaction temperature is crucial to fabricate diameter-controlled SWCNTs from the channels of FSM-16.  相似文献   

20.
Carbon encapsulated Fe nanoparticles were obtained using two methods: arc plasma and combustion synthesis. These powders were characterized by the following methods: SQUID magnetization measurements, transmission electron microscopy (TEM) and Mössbauer spectroscopy. The last two methods showed that Fe nanoparticles, obtained by both techniques belong to metallic and/or carbide phases, and are partially encapsulated by graphitic carbon. The particles had 10-100 nm in diameter, and were covered by carbon 5-15 nm thick layers. The transmission Mössbauer spectra revealed two magnetic and two paramagnetic components. In the plasma samples the largest part of iron was contained in the carbide phase while in the combustion samples the bcc α-Fe encompassed most of iron. The combustion sample has much higher content of carbon, indicating that the Fe particles were not covered by graphite layer totally, and were dissolved in the etching process. The dominant portion of combustion samples was not vaporized, thus the iron phase solidified from the liquid. The plasma-arc samples were synthesized via dual mechanism: growth of nanocrystals from the vapor phase (carbide) and solidification of the liquid micro-droplets in the cold zone (α-Fe and γ-Fe).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号