首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cement paste used in the Oil Industry is generally subjected to chemical degradation due to flow of acid fluids in various situations. The present study focuses on the evolution of thermo-hydro-mechanical (THM) behavior with chemical degradation of petroleum cement paste. Triaxial compression tests with different confining pressures (0, 3, 10 and 20 MPa) are carried out on a standard oil cement paste in sound state and completely degraded state by ammonium nitrate solution under a temperature of 90 °C. The results obtained show that the material in its initial state exhibits a small elastic phase and a strong capacity of compaction. The mechanical behavior depends on the load induced pore water pressure. Because of the increase in porosity caused by chemical degradation, the mechanical strength (cohesion and friction angle) and Young's modulus decrease. The dependence of mechanical strength and Young's modulus on confining pressure is smaller in the chemically degraded cement paste than in the sound one. In fine, the mechanical behavior of the whole material becomes more ductile. As a result, such effects of chemical degradation should be taken into account when modeling such cement paste materials exposed to such chemical degradations.  相似文献   

2.
The evolution of cement paste during the dormant period is analyzed via small amplitude oscillation rheological measurements. Cement paste, from the very first moments after mixing cement and water, shows the formation of an elastic gel whose strength is rapidly increasing over time. Up to the onset of Portlandite precipitation G′(t) increases by more than 2 orders of magnitude and in the acceleratory period G′(t) continues steadily to increase. A microstructural modification is likely to occur between the dormant and the acceleratory period. At low deformations in the linearity domain the storage modulus G′(ω) exhibits a negligible frequency dependence. At higher deformations cement paste shows a yield stress which increases on increasing paste concentration.The presence of superplasticizers decreases the yield stress and increases the gelation threshold of the paste. Above the gelation threshold the evolution of cement paste with superplasticizers follows similar trends to the neat paste.  相似文献   

3.
The paper investigates the possibility of using a shear wave reflection technique to monitor the viscoelastic behavior (represented by storage shear modulus and viscosity) of Portland cement paste at very early age. Three cement pastes with water/cement ratios equal to 0.4, 0.5 and 0.6 cured under water at a constant temperature of 25 °C were studied. By measuring the wave reflection coefficients and the phase angles of reflected ultrasonic waves, the dynamic storage shear moduli and the viscosity of the cement paste can be calculated. The calculated results of the storage modulus were compared with the results obtained directly from the oscillatory rheometric measurement. In addition, the viscosity calculated from the wave reflection measurements was compared with results obtained directly from the step rheometric method and a qualitative agreement was found. The results show that as a non-destructive method, the ultrasonic wave reflection method provides useful information about both the elastic and viscous behavior of cement pastes at very early age.  相似文献   

4.
采用RHEORIAB QC型旋转黏度计测定不同剪切方式下水泥浆体稳态流变曲线,并用修正宾汉姆流变模型对其进行拟合,研究了剪切方式对水泥浆体稳态流变测试的影响.结果表明:预剪切对水泥浆体动态屈服应力和塑性黏度影响不大.恒定剪切变形速率小于、等于、大于、偏大于水泥浆体结构抗剪切破坏能力时,剪切应力随时间分别先线性增加接着保持同一值、直接保持恒定值、先减小接着保持同一值、轻微增加后达到平衡.随剪切速率增加,水泥浆体在0.1~100 s-1、100~400 s-1、400~600 s-1三个区段依次呈现出剪切变稀、宾汉姆流体、剪切增稠的流变行为.剪切速率变化范围向剪切变稀或剪切增稠段移动,水泥浆体动态屈服应力减小、塑性黏度增大;单个剪切速率的剪切时间越长,水泥浆体动态屈服应力、塑性黏度均越小.  相似文献   

5.
采用RHEOLAB QC型旋转黏度计,分别以转速与剪切速率为控制变量测定了水泥浆体稳态流变曲线,分别用Couette转换与流变模型研究了水泥浆体屈服应力和黏度与测试及分析影响因素之间的关系.结果表明:Couette转换能反映测试条件变化对屈服应力和黏度的影响;增大试样筒与转子的间距,由转速转化的剪切速率增大,颗粒迁移作用增强,动态屈服应力递减,塑性黏度递增;增大试样筒外壁的摩擦系数,浆体与外筒壁间相对运动情况不发生变化,对动态屈服应力与塑性黏度基本无影响;依据拟合相关系数,流变模型中Herschel-Bulkley模型的吻合程度最好;依据结果标准差,Herschel-Bulkley模型的动态屈服应力结果稳定性最好,Bingham与改进Bingham模型的塑性黏度结果的稳定性相差不大.  相似文献   

6.
Samples of hydrating Type I portland cement paste were soaked in a saturated Sr(OH)2 solution at 80°C for periods from 7 to 28 days. This treatment generates a new and, as yet, unidentified material. The new material has a characteristic X-ray pattern, contains strontium, and is less porous and much stronger than hydrated cement paste. The 28-day modulus of rupture is increased 60% over that of hydrated cement paste soaked in saturated Ca(OH)2 solution at 80°C. Evidence is presented that this new material occupies an increased volume and thereby produces an early, chemically-induced, prestress with the result that the 7-day modulus of rupture is about 10% greater than the 28-day value.  相似文献   

7.
The effectiveness of advanced ultrasonic techniques to quantitatively characterize the capillary porosity and entrained air content in hardened cement paste is examined. Direct measurements of ultrasonic attenuation are used to measure the volume fraction and average size of entrained air voids and to assess variations in intrinsic porosity - as influenced by water-to-cement ratio (w/c) - in hardened cement paste samples. For the air entrained specimens, an inversion procedure based on a theoretical attenuation model is used to predict the average size and volume fraction of entrained air voids in each specimen, producing results in very good agreement with results obtained by standard petrographic methods and by gravimetric analysis. In addition, ultrasonic attenuation measurements are related to w/c to quantify the relationship between increasing porosity (with increasing w/c) and ultrasonic wave characteristics.  相似文献   

8.
Given the density value, elastic properties of a homogeneous and isotropic material can be determined provided that primary and shear wave (P- and S-wave) velocities are known. P-waves are easier to monitor and detect compared to the S-waves. In concrete, along with P-wave velocity, shear wave velocity measurement is important in determining the elastic properties. These elastic properties could be implemented in assessing the quality of in-situ concrete. After an extensive literature survey, this study focused on the applicability of Hilbert transformation of waveforms to determine shear wave velocity in concrete material. The experimental work consisted of a set of ultrasonic measurements on the surface of a reinforced concrete deck. The recorded waveforms were then analyzed to obtain the arrival times of P- and S-waves. Hilbert transformation of the waveforms proved to yield reliable and repeatable results.  相似文献   

9.
The acceleration of a cement paste setting as a result of lime addition may be shown from isothermal calorimetry measurements. We investigated the underlying mechanisms through two techniques that provide information on porous structure (using Nuclear Magnetic Resonance) and mechanical properties (elastic modulus measured by rheometry). The correlation of the two sets of results on a cement paste clearly reveals the successive steps of setting, and particularly highlights the so-called induction period. We show that this induction period disappears in the presence of lime, leading to an acceleration of the setting. We also show that beyond some critical concentration of added lime the acceleration of setting is negligible.  相似文献   

10.
PVA is a water soluble polymer used as cement modifier. An important modification observed by addition of PVA is the increase of the bond strength between cement paste and aggregate. The purpose of this work was to investigate the effect of PVA on the mechanism of adherence of cement pastes to ceramic tiles. Pastes with and without PVA were applied on the back side of porcelain tiles and after 56 days the microstructures of the interfaces were evaluated by SEM. The mode of rupture changed from mostly interfacial failure to a mixed-mode interfacial-cohesive failure for the paste with polymer addition in which was observed the reduction of the thickness of the porous transition zone between tile and paste bulk. Also, in plain paste the formation of a duplex film (CH plus C-S-H) in contact with tile surface was observed while in modified paste a single layer of C-S-H was identified.  相似文献   

11.
The effect of triethanolamine (TEA) at various dosages on the early performance of cement paste was systematically evaluated through the techniques of rheological measurements, penetration tests, and ultrasonic pulse velocity. The correlation of early performance to the chemical hydration process was analyzed by calorimetry, zeta potential, in situ XRD, and pore solution analysis. It is found that the effect of TEA on the early performance of cement paste is strongly dependent on its dosage. With the TEA dosage below 0.1 wt%, the setting and microstructural development of cement paste are retarded. Meanwhile, the yield stress of fresh paste is decreased due to the increasing zeta potential of cement grains. The promoted formation of ettringite (AFt) and monosulfate (AFm) caused by TEA decreases the rheological retention ability. At dosages ≥0.2 wt%, the reaction of aluminate-containing phases is greatly accelerated and a flash setting is observed. Besides, the importance of ferric phase on the reaction of cement with TEA is highlighted. At a low dosage, TEA prefers to accelerate the dissolution of tetracalcium aluminoferrite (C4AF) first and increases the [Fe] in the pore solution of cement paste. In cement without C4AF, the retardation of TEA on silicate phase hydration is significantly alleviated.  相似文献   

12.
Poromechanical behaviour of hardened cement paste under isotropic loading   总被引:1,自引:0,他引:1  
The poromechanical behaviour of hardened cement paste under isotropic loading is studied on the basis of an experimental testing program of drained, undrained and unjacketed compression tests. The macroscopic behaviour of the material is described in the framework of the mechanics of porous media. The poroelastic parameters of the material are determined and the effect of stress and pore pressure on them is evaluated. Appropriate effective stress laws which control the evolution of total volume, pore volume, solid volume, porosity and drained bulk modulus are discussed. A phenomenon of degradation of elastic properties is observed in the test results. The microscopic observations showed that this degradation is caused by the microcracking of the material under isotropic loading. The good compatibility and the consistency of the obtained poromechanical parameters demonstrate that the behaviour of the hardened cement paste can be indeed described within the framework of the theory of porous media.  相似文献   

13.
采用截锥圆模法测定不同掺量超细粉体水泥复合浆液的流动度.采用ZNN-D6B型旋转黏度计研究超细玻璃粉和偏高岭土两种超细粉体对水泥净浆流变行为的影响,得到了剪切速率-剪切应力(γ-τ)曲线和剪切速率-表观粘度(γ-μa)曲线,并分别采用宾汉姆模型和赫-巴模型对γ-τ流变曲线进行拟合,得到不同掺量超细玻璃粉-水泥(GP-C)复合浆液和偏高岭土-水泥(MK-C)复合浆液的动切力、塑性粘度、稠度系数和流性指数等流变参数.结果表明:超细粉体的加入降低了复合浆液的流动度.随着掺量的增加,两种复合浆液的宾汉动切力τ0、塑性粘度η、赫-巴动切力τy均逐渐增大,MK-C复合浆液的稠度系数K和流性指数n逐渐减小,GP-C复合浆液的稠度系数K呈现增大-减小-增大的趋势,而流性指数n呈现减小-增大-减小的趋势.所有样本表观粘度μa都随着剪切速率的增大而减小,呈现剪切稀释现象.  相似文献   

14.
粘土水泥系列浆材性能优越,价格低廉,可广泛应用于库堤防渗、灌浆加固、溶洞充填、垃圾填埋防护等工程中,其流变性能对灌浆施工及防渗加固效果的影响不可忽视。利用Brookfield+R/S流变仪系统研究粘土水泥系列浆材的流变性能,包括流变模型、粘度时变性和触变性,进而根据其各自流变性能分析其适用范围。结果表明:粘土水泥浆材的流变性能与水固比及粘土掺量有关,其初始粘度较普通水泥浆大,扩散范围可控,在大空隙多孔地层使用适宜配比的粘土水泥浆材进行防渗灌浆,可很好地解决跑浆、串浆的问题,提高灌浆效益;粘土水泥膏浆的流变性能主要与固化剂掺量有关,其初始屈服应力及粘度大,具有良好的抗水流冲释性能,可用于地下动水条件下的防渗堵漏;粘土水泥砂膏浆流变性能与固化剂掺量和砂灰比有关,添加砂料后,初始屈服应力及粘度更大,不易流失,可作为溶洞填充材料,节约工程成本,是耗浆量大的地质条件防渗的优选灌浆材料。  相似文献   

15.
A controlled shear stress–shear rate rheometer was used to determine the viscoelastic behavior of cement paste incorporating various superplasticizers and subjected to prolonged mixing at high temperature. At a low applied shear stress range, the oscillatory shear strain/stress curve of cement paste was characteristic of a linear elastic solid; while the higher stress range was characteristic of a viscous liquid exhibiting a linear strain increase with increasing applied shear stress. The transition from solid-like to liquid-like behavior occurred over a very narrow stress increment. This transition stress corresponded to the yield stress parameter estimated from conventional flow curves using the Bingham model. The yield stress from oscillatory shear stress tests was estimated using the intersection between the viscous part of the oscillatory shear strain/stress curve and the oscillatory shear stress axis. In this study, equations describing the variation of shear strain versus shear stress beyond the solid–fluid transition for cement pastes incorporating various superplasticizers at different ambient temperatures and mixing times were developed using genetic algorithms (GA). The yield stress of cement pastes was subsequently predicted using the developed equations by calculating the stress corresponding to zero strain. A sensitivity analysis was performed to evaluate the effects of the mixing time, ambient temperature, and superplasticizer dosage on the calculated yield stress. It is shown that the computed yield stress values compare well with corresponding experimental data measured using oscillatory rheology.  相似文献   

16.
Modelling elasticity of a hydrating cement paste   总被引:3,自引:0,他引:3  
Concrete is a complex multi-scale composite involving multi-physics processes. As it is the only evolving component of concrete, the cement paste has a major influence on the mechanical properties of concrete at early age. This paper focuses on the increase of the elastic properties of a cement paste during its hydration. The homogenization theory for disordered media is used in order to estimate the evolution of the effective elastic moduli of the hydrating paste. The morphological model refers to two types of C-S-H (calcium silicate hydrates, main hydration products of Portland cements) distinguished by many authors: inner products or high density C-S-H build up layers surrounding the anhydrous particles, while the outer products or low density C-S-H play the role of a porous matrix.The simulations of the effective Young's modulus at late age during hydration and at the end of hydration prove to be in excellent agreement with the experimental results available in the literature.  相似文献   

17.
A new look at the measurement of cementitious paste setting by Vicat test   总被引:3,自引:0,他引:3  
The Vicat test is a standard test for measuring the setting times of cement paste and mortar. The physical background of the test is based on the resistance of a paste to dynamic penetration by a rod with a certain weight and shape (shear strain). The information obtained (initial and final set time) is very useful to compare cement setting properties. This study shows that it is possible to obtain more fundamental information about the setting property kinetics with only one modification of the testing procedure.The apparent mass of the static full immersed needle is measured.Due to the deformation of the cement paste at rest, the needle apparent mass varies with time. We show that the variation of the stress mobilized at the plate surface is related to the increase of yield stress during the setting period. The results of these experiments are discussed and compared with the traditional Vicat test for cement paste.  相似文献   

18.
采用Anton Paar MCR 302型流变仪研究了乳胶粉掺量对纤维素醚改性水泥浆体流变性能和触变性的影响.结果表明,掺入乳胶粉的纤维素醚改性水泥浆体表现为剪切稀化的流变特性,当剪切速率较小时,浆体黏度下降显著.乳胶粉掺量越大,浆体基于Herschel-Bulkey模型拟合得到的屈服应力和黏度系数均越大.并且乳胶粉能...  相似文献   

19.
Cementitious materials are transformed from a fluid to a solid state due to a chemical reaction known as hydration. These cementitious materials exhibit a continuous change in the mechanical properties with time; there is a steady increase in the stiffness after setting. An ultrasonic test setup and the data analysis procedure, which provide for continuous monitoring of the hydrating cementitious materials from a very early age, have recently been developed. The test procedure for obtaining the ultrasonic test data from cementitious material at different stages of hydration and the theoretical analysis, which allows interpreting the ultrasonic response in terms of the changes in the acoustic shear impedance of the hydrating cementitious material, are presented in this paper. Experimental test results obtained from mortar mixtures of known composition are presented. It is shown that the initial and final setting times correspond approximately with the occurrence of distinctive features in the ultrasonic response.  相似文献   

20.
Crack growth in porous and viscoelastic materials has been studied. The decrease of strength of hardened cement paste and concrete under high sustained load can be described with this theoretical approach. Creep as well as time dependence of elastic modulus and strength enter the calculation. Stress relaxation in the material near cracktips can be taken into account by introducing a function m(t,τ). Results are the same in the case of uniaxial and biaxial state of stress. [It could be shown that the probability for shear cracks in a cylindrical sample increases rapidly with increasing confining pressure.] Good agreement with experimental data was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号