首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

2.
The electron field emission (EFE) and electrochemical (EC) properties of N2(10%)-incorporated ultra-nanocrystalline diamond (N2-UNCD) films were investigated. Microstructure examination using TEM indicates that incorporating the N2 species without the substrate heating induced the presence of stacking faults, which can be effectively suppressed by growing the films at elevated temperature. While the synthesis of N2-UNCD without substrate heating can efficiently enhance the EC properties (large potential window with smaller background current) of the films, the EFE behavior of the films can be improved only when the films were grown at an elevated temperature. Moreover, coating the conducting N2-UNCD on Si-tips can further enhance the EFE and CV behaviors, viz. (E0)tip = 5.0 V/μm with (Je)tip = 0.28 mA/cm2 at 15 V/μm applied field and ΔEp = 0.5 V with redox peak 170 μA were achieved.  相似文献   

3.
Tetrahedral amorphous carbon (ta-C) film was coated on aligned carbon nanotube (CNT) films via filtered cathodic vacuum arc (FCVA) technique. Field electron emission properties of the CNT films and the ta-C/CNT films were measured in an ultra high vacuum system. The IV measurements show that, with a thin ta-C film coating, the threshold electric field (Ethr) of CNTs can be significantly decreased from 5.74 V/μm to 2.94 V/μm, while thick ta-C film coating increased the Ethr of CNTs to around 8.20 V/μm. In addition, the field emission current density of CNT films reached 14.9 mA/cm2 at 6 V/μm, while for CNTs film coated with thin ta-C film only 3.1 V/μm of applied electric field is required to reach equal amount of current density. It is suggested that different field emission mechanisms should be responsible for the distinction in field emission features of CNT films with different thickness of ta-C coating.  相似文献   

4.
The electron field emission (EFE) properties of Si-nanowires (SiNW) were improved by coating a UNCD films on the SiNWs. The SiNWs were synthesized by an electroless metal deposition (EMD) process, whereas the UNCD films were deposited directly on bare SiNW templates using Ar-plasma based microwave plasma enhanced chemical vapor deposition (MPE–CVD) process. The electron field emission properties of thus made nano-emitters increase with MPE–CVD time interval for coating the UNCD films, attaining small turn-on field (E0 = 6.4 V/μm) and large emission current density (Je = 6.0 mA/cm2 at 12.6 V/μm). This is presumably owing to the higher UNCD granulation density and better UNCD-to-Si electrical contact on SiNWs. The electron field emission behavior of these UNCD nanowires emitters is significantly better than the bare SiNW ((E0)SiNWs = 8.6 V/μm and (Je)SiNWs < 0.01 mA/cm2 at the same applied field) and is comparable to those for carbon nanotubes.  相似文献   

5.
Double-walled carbon nanotubes (DWCNTs) have been effectively synthesized by direct current (DC) arc discharge in low pressure air using a mixture of Fe catalyst and FeS promoter. Compared with conventional arc methods, this method is easier to implement without using expensive high purity gas sources. A tip structural DWCNT film has been successfully fabricated by a mixing process of electrophoresis, electroplating and electrocorrosion. The field emission properties of tip structural nanotube film are significantly increased compared with DWCNT film fabricated by electrophoresis. The turn-on electric field Eto decreases from 1.25 to 0.92 V/μm, the low threshold electric field Eth decreases from 1.45 to 1.13 V/μm, and the field enhancement factor β increases from about 2210 to 4450. Meanwhile, this tip structural CNT film shows remarkably stable within 2% fluctuations for several hours. The high-performance emitter material and preparation technologies are both easy to scale up to large areas.  相似文献   

6.
A photorefractive effect at the wavelength of 1064 nm is demonstrated for a composite consisting of an aromatic polyimide and carbon single wall nanotubes. The two-beam gain coupling coefficient and the net gain coefficient are equal to 90 and 65 cm−1, respectively, at 80 V/μm for a nanocomposite containing 0.25 wt% crude nanotube material. The refractive index modulation measured at E0 = 50 V/μm is close to Δn = 0.004.  相似文献   

7.
The electron field emission (EFE) properties of Si nanostructures (SiNS), such as Si nanorods (SiNR) and Si nanowire (SiNW) bundles were investigated. Additionally, ultrananocrystalline diamond (UNCD) growth on SiNS was carried out to improve the EFE properties of SiNS via forming a combined UNCD/SiNS structure. The EFE properties of SiNS were improved after the deposition of UNCD at specific growth conditions. The EFE performance of SiNR (turn-on field, E0 = 5.3 V/μm and current density, Je = 0.53 mA/cm2 at an applied field of 15 V/μm) was better than SiNW bundles (turn-on field, E0 = 10.9 V/μm and current density, Je < 0.01 mA/cm2 at an applied field of 15 V/μm). The improved EFE properties with turn-on field, E0 = 4.7 V/μm, current density, Je = 1.1 mA/cm2 at an applied field of 15 V/μm was achieved for UNCD coated (UNCD grown for 60 min at 1200 W) SiNR. The EFE property of SiNW bundles was improved to a turn-on field, E0 = 8.0 V/μm, and current density, Je = 0.12 mA/cm2 at an applied field of 15 V/μm (UNCD grown for 30 min at 1200 W).  相似文献   

8.
The relationship between the electron field emission properties and structure of ultra-nanocrystalline diamond (UNCD) films implanted by nitrogen ions or carbon ions was investigated. The electron field emission properties of nitrogen-implanted UNCD films and carbon-implanted UNCD films were pronouncedly improved with respect to those of as-grown UNCD films, that is, the turn-on field decreased from 23.2 V/μm to 12.5 V/μm and the electron field emission current density increased from 10E−5 mA/cm2 to 1 × 10E−2 mA/cm2. The formation of a graphitic phase in the nitrogen-implanted UNCD films was demonstrated by Raman microscopy and cross-sectional high-resolution transmission electron microscopy. The possible mechanism is presumed to be that the nitrogen ion irradiation induces the structure modification (converting sp3-bonded carbons into sp2-bonded ones) in UNCD films.  相似文献   

9.
Arrays of nanocrystalline diamond (NCD) stripes were fabricated by plasma etching of a NCD film. Electron field emission (EFE) of NCD arrays with 100-μm-wide stripes separated by different spacings was analyzed. The NCD arrays had higher EFE efficacy than the non-patterned blanket NCD film. The turn-on electric field (Eon) decreased from 5.4 V/μm-1 for the blanket NCD film to 4.2, 4.4 and 4.7 V/μm− 1 for the NCD arrays with 100, 500 and 1000 μm of spacing, respectively. Both the effective emitting area and the field enhancement factor for the NCD emitters were increased by patterning. The enhanced EFE from arrayed NCD stripes was possibly attributed to the edge effect and reduction of electrostatic screening.  相似文献   

10.
A novel synthesis of carbon nanotubes for field-emitter arrays with a uniform field emission current is reported. Microwave plasma chemical vapor deposition and a unique structure of a sandwich catalyst stack are used to grow vertically aligned carbon nanotubes with a high density, uniform length and diameter. After being etched in a H2/N2-microwave plasma, the overall field emission current density from the prepared emitter arrays is 1.2 A/cm2 at an electric field of 6.5 V/μm with stable and uniform emission characteristics. The threshold field is 3.2 V/cm, defined at an emission current density of 10−6 A/cm2.  相似文献   

11.
We have prepared thin films of arc discharge single walled nanotubes by vacuum filtration. For film thicknesses greater than 40 nm, the films are of high optical quality; the optical transmission varies by <2% over the film area when measured with a spatial resolution of 4 μm. However, the films become spatially non-uniform for film thickness below 40 nm. The in-plane DC conductivity correlates with the uniformity, increasing from ∼3800 S/m for a 10 nm thick film to ∼2-2.5 × 105 S/m for films of thickness >40 nm. Conductive atomic force microscopy maps show reasonably uniform current flow out of the plane of the film. For all thicknesses, the optical transmittance scales with film thickness as expected for a thin conducting film with optical conductivity of 1.7 × 104 S/m (λ = 550 nm). For films with t > 40 nm the ratio of DC to optical conductivity was σDC/σOp = 13.0, leading to values of transmittance and sheet resistance such as T = 80% and Rs = 110 Ω/□ for the t = 40 nm film. Electromechanically, these films were very stable showing conductivity changes of <5% and <2% when cycled over 2000 times in compression and tension respectively.  相似文献   

12.
The effects induced by α-particles and laser beam irradiation in air atmosphere in uncured and cured bisbenzocyclobutene (BCB) 2 μm thick films, spin-coated on glass/ITO surface have been investigated. α-Particle irradiation was done by means of a thin film 241Am source (Eα = 5.486 MeV), up to the total fluence of about 5 × 1010 particles/cm2. Laser irradiation was performed by a Nd3+:YAG (λ = 1.06 μm) laser in the free generation and the Q-switch regime, using both focused and unfocused beams. Irradiation induced changes were investigated using Light and Atomic Force Microscopy (AFM), infrared (IR), Ultraviolet/visible (UV/vis) and Raman spectroscopy by inspecting several uncured and cured BCB films before and after irradiation. It has been found that both types of irradiation under investigated conditions have produced a novel phase in the material, which is not present either in the uncured or the cured BCB films. Possible implications of the observed effects on curing and degradation of BCB films have been discussed.  相似文献   

13.
Composite magnetoelectric films using ferroelectric lead zirconate titanate (PZT) and ferromagnetic nickel zinc ferrite (NZF) were prepared using the combination of sol-gel and hydrothermal process on Pt/Ti/SiO2/Si substrates. The thickness was estimated ∼2 μm using cross-sectional SEM. Structure, morphology and electro-magnetic characterization were assessed using XRD, XPS, SEM, dielectric, leakage current, ferroelectric, and magnetic property analyze. The composite films exhibit coexistence of ferroelectric and ferromagnetic ordering at room temperature with a remnant polarization (Pr), and coercive field (Ec) of 1.2 μC/cm2 and 7.8 kV/cm, respectively, and saturation magnetization (Ms) ∼20 emu/cm3. Polarization improved ∼5.2% upon poling the composite film using a magnetic field of 1 T.  相似文献   

14.
Three-dimensional growth of well-aligned high-purity multiwall carbon nanotubes (CNTs) is achieved on silicon, nickel-coated silicon and cobalt-coated silicon substrates by thermal decomposition of a botanical carbon source, camphor, with different catalyst concentrations. Field emission study of as-grown nanotubes in a parallel-plate diode configuration suggests them to be an efficient emitter with a turn-on field of ∼1 V/μm (for 10 μA/cm2) and a threshold field of ∼4 V/μm (for 10 mA/cm2). Maximum current density lies in a range of 20-30 mA/cm2 at 5.6 V/μm with significant reversibility. Prolonged stability test of camphor-grown CNT emitters suggests a life time of ∼5 months under continuous operation. A new feature, metal-assisted electron emission from CNTs, has been addressed. Isolated nanotubes used as a cold cathode in a field emission microscope reveal the pentagonal emission sites and hence the atomic structure of the nanotube tips.  相似文献   

15.
A novel composite plating method has been developed for the fabrication of carbon nanotube/Ni (CNT/Ni) field emission cathode. The field emission properties of the initial CNT/Ni field emitter show a low turn-on electric field Eon of about 1.1 V/μm with an emission current density of 1 μA/cm2, and a low threshold electric field Eth of about 1.7 V/μm with an emission current density of 1 mA/cm2. After performing a stability test with a high emission current density in high vacuum, the corresponding microstructure and the degree of graphitization of the CNT/Ni field emitter were measured by using scanning electron microscopy and Raman spectroscopy. We found that the degree of graphitization slowly decreases with the duration time tFE of the stability test, the size of small rod-like CNT/Ni composite structures in the film increases with tFE, and obvious cracks appear in the film as tFE is larger than 60 h. The degradation of the field emission properties may be explained by the Joule heating effect on the CNT/Ni field emitter under high emission current density.  相似文献   

16.
Incorporation of H2 species into Ar plasma was observed to markedly alter the microstructure of diamond films. TEM examinations indicate that, while the Ar/CH4 plasma produced the ultrananocrystalline diamond films with equi-axed grains (~ 5 nm), the addition of 20% H2 in Ar resulted in grains with dendrite geometry and the incorporation of 80% H2 in Ar led to micro-crystalline diamond with faceted grains (~ 800 nm). Optical emission spectroscopy suggests that small percentage of H2-species (< 20%) in the plasma leads to partially etching of hydrocarbons adhered onto the diamond clusters, such that the C2-species attach to diamond surface anisotropically, forming diamond flakes, which evolve into dendrite geometry. In contrast, high percentage of H2-species in the plasma (80%) can efficiently etch away the hydrocarbons adhered onto the diamond clusters, such that the C2-species can attach to diamond surface isotropically, resulting in large diamond grains with faceted geometry. The field needed to turn on the electron field emission for diamond films increases from E0 = 22.1 V/μm (Je = 0.48 mA/cm2 at 50 V/μm applied field) for 0% H2 samples to E0 = 78.2 V/μm (Je < 0.01 mA/cm2 at 210 V/μm applied field) for 80% H2 samples, as the grains grow, decreasing the proportion of grain boundaries.  相似文献   

17.
The electron emission property of various screen-printed activated carbons was studied. Each activated carbon was characterized with a thick film, which was made of photosensitive paste. The activated carbon made of coal showed the highest emission current density (J) of ∼350 (μA/cm2) and with the lowest threshold electric field (Eth) ∼ 4.2 (V/μm). These results were explained by graphitization factor and sp2/sp3 ratio. The data clearly show that the carbon content in the paste is one of the main factors affecting the morphology of the film surface and field emission properties. As the carbon increases, J increases and Eth decreases.  相似文献   

18.
A modified nucleation and growth process was adopted so as to improve the electron field emission (EFE) properties of diamonds films. In this process, a thin layer of ultra-nanocrystalline diamonds (UNCD), instead of bias-enhanced-nuclei, were used as nucleation layer for growing diamond films in H2-plasma. The morphology of the grains changes profoundly due to such a modified CVD process. The geometry of the grains transform from faceted to roundish and the surface of grains changes from clear to spotty. The Raman spectroscopies and SEM micrographs imply that such a modified diamond films consist of UNCD clusters (~ 10–20 nm in size) on top of sp3-bonded diamond grains (~ 100 nm in size). Increasing the total pressure in CVD chamber deteriorated the Raman structure and hence degraded the EFE properties of the films, whereas either increasing the methane content in the H2-based plasma or prolonged the growth time improved markedly the Raman structure and thereafter enhanced the EFE properties of diamond films. The EFE properties for the modified diamond films can be turned on at E0 = 11.1 V/μm, achieving EFE current density as large as (Je) = 0.7 mA/cm2 at 25 V/μm applied field.  相似文献   

19.
The nitrogen (N) doping effect and field emission properties of double-walled carbon nanotubes (DWCNTs) were investigated. Diameter transformation and defect generation in the N-doped DWCNTs mainly depend on the amount of nitrogen employed. By applying N-doping into DWCNTs (1.5 N at.%), the average diameters of the DWCNTs were increased from 1.7 to 2.4 nm, and the crystallinity (IG/ID) was decreased from 13.5 to 5. Field emission properties were enhanced by the N doping into DWCNTs. The turn-on field, corresponding to a current density of 0.1 μA/cm2, was about 0.9 V/μm for the N-doped DWCNTs (1.5 N at.%). The field enhancement factor of the N-doped DWCNTs was higher than that of the undoped DWCNTs. It was found that the field emission properties were controlled by pyridine-like N in the graphite due to N-doping.  相似文献   

20.
Wei-Jen Hsieh 《Carbon》2005,43(4):820-826
The optical and electrical properties of so-called carbon nitride films (a-C:N) and boron doped so-called carbon nitride films (a-C:N:B) are studied with cathodoluminescence (CL) spectroscopy and electron field emission measurement. The a-C:N films were first deposited on Si by a filtered cathodic arc plasma system, and then boron ions (∼1 × 1016 cm−2) were implanted into the a-C:N films to form a-C:N:B films by a medium current implanter. The structural and morphological properties of a-C:N and a-C:N:B films were then analyzed using secondary ion mass spectrometer, X-ray photoelectron spectroscopy, FT-IR spectra, Raman spectroscopy and atomic force microscopy. The a-C:N film exhibits luminescence of blue light (∼2.67 eV) and red light (∼1.91 eV), and the a-C:N:B film displays luminescence of blue light (∼2.67 eV) in CL spectra measured at 300 K. Furthermore, the incorporated boron atoms change the electron field emission property, which shows a higher turn on field for the a-C:N:B film (3.6 V/μm) than that for the a-C:N film (2.8 V/μm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号