首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting the pullout response of inclined hooked steel fibers   总被引:1,自引:0,他引:1  
Steel fiber reinforced concrete (SFRC) is symptomatically an anisotropic material due to the random orientation of fibers within the cement matrix. Fibers under different inclination angles provide different strength contributions at a given crack width. Therefore the pullout response of inclined fibers is a paramount subject to understand and quantify SFRC behavior, particularly in the case of fibers with hooked ends, which are currently the most widely used. Several experimental results were considered to validate the approach and to assure its suitability on distinct material properties and boundary conditions. The good agreement on predicting the pullout behavior of these fibers encourages its use towards a new concept of design and optimization of SFRC.  相似文献   

2.
The utilization of waste glass in concrete can cause cracking and weakening due to expansion by alkali-silica reaction (ASR). In this study, ASR expansion and properties of strength were analyzed in terms of waste glass content, glass color (brown, green), fibers (steel fiber, polypropylene fiber) and fiber content, in anticipation of reducing ASR expansion.Results showed that green waste glass was more usable than brown because its expansion was less than that of brown glass. Using the accelerated ASTM C 1260 test of waste glass, no pessimum content was found. Furthermore, when fibers and waste glass were combined, there was an effect on the reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. In particular, adding 1.5 vol.% of steel fiber to concrete containing 20% waste glass reduced the expansion ratio by 40% and increased flexural strength by up to 110%, a vast improvement when compared with using only waste glass (80 °C H2O curing) by itself.  相似文献   

3.
The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.  相似文献   

4.
Reported below are the results from a study aimed at mitigating the deleterious alkali-silica reaction by using perlite powder as an admixture. The expansion of mortar bars containing various amounts of silica fume (SF), expanded perlite, and natural perlite was studied. Two kinds of reactive aggregates were used in the study: highly reactive river aggregate containing opal and marginally reactive monzo-diorite aggregate. Expanded perlite and silica fume were tested with both aggregate, separately; on the other hand, natural perlite was tested only with monzo-diorite aggregate. The bars were cast in accordance with ASTM C1260, accelerated mortar bar method, and were stored in NaOH solution for 30 days. Length changes were measured and reported. The results showed that both expanded and natural perlite powder (NPP) have potential to suppress the deleterious alkali-silica expansion.  相似文献   

5.
This study demonstrates the synergistic effect of some particular combination of fibers that can provide significantly better spalling protection of concrete in a fire than single fiber by themselves at the same fiber content level. Various combinations of polypropylene, polyvinyl alcohol, cellulose and nylon fibers were investigated. Fire tests were conducted in accordance with ISO-834. The combination of nylon (9 mm length) and polypropylene (19 mm length) fibers found to provide the most optimum results. By combining these two fibers, the same level of spalling protection was achieved by three times less fiber content than the single type of 0.10% polypropylene fiber commonly prescribed. A “fiber effectiveness parameter” is proposed which is a function of total number of fibers per unit volume and length of fiber. This parameter is useful in providing quantitative explanations of various fiber additions and their spalling results in fire.  相似文献   

6.
A new nonlinear acoustic technique — Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS) — is developed and used to characterize the alkali-reactivity of different aggregates. Cementitious materials such as mortar and concrete exhibit a hysteretic and nonlinear elastic behavior in their constitutive relations. This hysteretic nonlinearity is associated with interfacial debonding between the different constituents, and it changes with the progress of damage such as that induced by the alkali-silica reaction (ASR). One of the consequences of the hysteretic nonlinear property of these materials is the decrease in resonance frequencies, with increased excitation amplitude. This shift in the resonance frequency as a function of the material nonlinearity parameter can be used to directly characterize the damage state of the material. This research tracks the variation of the nonlinearity parameter during a standard accelerated mortar bar test (AMBT) to assess the potential for alkali-reactivity of aggregates. The results show that the NIRAS technique is more sensitive than conventional linear acoustic methods and is capable of accurately characterizing the reactivity of the aggregates examined. Furthermore, the results show advantages over standard expansion measurements for differentiating various aggregates having similar levels of reactivity, particularly at early test ages. These changes in the nonlinearity parameter are benchmarked against results from a petrographic analysis. Thus, the proposed NIRAS is a promising technique for the rapid identification of alkali-reactive aggregates.  相似文献   

7.
This paper presents results covering the effects of alkali content of Portland cement (PC) on expansion of concrete containing reactive aggregates and supplementary cementing materials (SCM). The results showed that the alkali content of PC has a significant effect on expansion of concrete prisms with no SCM. When SCM is used, the expansion was found to be related to both the chemical composition of the SCM and, to a lesser extent, the alkali content of the PC. The concrete expansions were explained, at least partly, on the basis of the alkalinity of a pore solution extracted from hardened cement paste samples containing the same cementing blends. An empirical relation was developed correlating the chemical composition (Ca, Si and total Na2Oe) of the cementing blend (PC + SCM) and the alkalinity of the pore solution. Results from accelerated mortar bar test (ASTM C 1260) and a modified version thereof are also presented.  相似文献   

8.
Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.  相似文献   

9.
In concrete containing potentially reactive aggregates, deleterious alkali-aggregate-reaction (AAR) can be prevented by the use of suitable mineral admixtures or by limiting cement content and alkalis (Na2O-equivalent) of the cement. However, the Na2O-equivalent of cement may not always accurately define the potential of cement to cause AAR. In this study, the potential reactivity of concrete produced with cements having similar Na2O-equivalents but different K/Na-ratios has been measured and the composition of gel has been analyzed. Additionally, pastes and mortars have been produced to study the development of pore solution composition.The expansion of the concrete mixtures shows significant differences depending on the cement used. The different K/Na-ratio present in the cements is reflected in the pore solution of pastes and mortars and in the gel present in aggregates of the concrete mixtures. As the hydroxide concentration in the pore solutions of pastes and mortars produced with the different cements is nearly identical, the difference in K/Na-ratio has to be the reason for the observed differences in concrete expansion.  相似文献   

10.
The mechanical effects of alkali-silica reaction (ASR) have to be modeled in order to assess the deterioration level and the stability of ASR-damaged concrete structures. Several experimental programs have shown the effects of compressive stresses on ASR-induced strains. The effect is so significant that assessment models have to take into account the modification of ASR expansions due to applied stresses and the consequences on the mechanical response of damaged structures. This paper presents and analyzes measurements performed on concrete specimens subjected to several states of stresses along the three directions (due to applied stresses and to passive restraint). Mechanical calculations show that the volumetric expansion imposed by ASR is constant whatever the stresses conditions. They point out the “expansion transfer” occurring along the directions which are less compressed; thus, the effect of stresses on ASR expansions anisotropy can be precisely quantified.  相似文献   

11.
Lithium additives have been shown to reduce expansion associated with alkali-silica reaction (ASR), but the mechanism(s) by which they act have not been understood. The aim of this research is to assess the effectiveness of three lithium additives—LiOH, LiCl, and LiNO3—at various dosages, with a broader goal of improving the understanding of the means by which lithium acts. The effect of lithium additives on ASR was assessed using mortar bar expansion testing and quantitative elemental analysis to measure changes in concentrations of solution phase species (Si, Na, Ca, and Li) in filtrates obtained at different times from slurries of silica gel and alkali solution. Results from mortar bar tests indicate that each of the lithium additives tested was effective in reducing expansion below an acceptable limit of 0.05% at 56 days. However, different lithium additive threshold dosages ([Li2O]/[Na2Oe]) were required to accomplish this reduction in expansion; these were found to be approximately 0.6 for LiOH, 0.8 for LiNO3, and 0.9 for LiCl. Quantitative elemental analysis indicated that sodium and lithium were both bound in reaction products formed within the silica gel slurry. It is also believed that lithium may have been preferentially bound over sodium in at least one of the reaction products because a greater percent decrease in dissolved lithium than dissolved sodium was observed within the first 24 h. It appears that lithium additives either decreased silica dissolution, or promoted precipitation of silica-rich products (some of which may be nonexpansive), because the dissolved silica concentration decreased with increasing dosage of lithium nitrate or lithium chloride additive.  相似文献   

12.
The alkali-aggregate reaction (AAR) in high-strength concrete and the effect of ground granulated blast-furnace slag (GGBFS) were studied in this paper. From the results of this study, following conclusions can be drawn:
(1)
In high-strength concrete, because of high alkali content, the possibility of alkali-aggregate reaction is much higher than conventional concrete.
(2)
The occurrence of large expansion can be prevented by using nonreactive aggregate, which has been judged according to the mortar bar and chemical method's as specified in JIS A 5308, in high-strength concrete.
(3)
The replacement of cement by 30% of blast-furnace slag and using low-alkali cement can prevent the alkali-aggregate reaction from causing large expansion in high-strength concrete.
  相似文献   

13.
This study is aimed at proposing a simple analytical model to investigate the post-cracking behaviour of FRC panels, using an arbitrary tension softening, stress crack opening diagram, as the input. A new relationship that links the crack opening to the panel deflection is proposed. Due to the stochastic nature of material properties, the random fibre distribution, and other uncertainties that are involved in concrete mix, this relationship is developed from the analysis of beams having the same thickness using the Monte Carlo simulation (MCS) technique. The softening diagrams obtained from direct tensile tests are used as the input for the calculation, in a deterministic way, of the mean load displacement response of round panels. A good agreement is found between the model predictions and the experimental results.  相似文献   

14.
The Spiral Notch Torsion Test (SNTT) determines the intrinsic fracture toughness (KIC) of structural materials by applying pure torsion to cylindrical specimens having a notch line that spirals around the specimen at a 45° pitch. KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments, as well as ceramic and graphite materials. One important characteristic of SNTT is that neither a fatigue precrack nor a deep notch is required for evaluation of brittle materials, significantly reducing the sample size requirement. Results are reported for a Portland cement-based mortar demonstrating applicability of the SNTT method to cementitious materials. The estimated KIC of the tested mortar samples with compressive strength of 34.45 MPa was found to be 0.360 ± 0.017 MPa √m.  相似文献   

15.
Experimental measurements and numerical analysis were carried out to study the effect of the cell geometry in resistivity determinations. The resistance of the diaphragm in cement paste and mortar samples was determined using impedance spectroscopy. Numerical simulations were performed using finite element method (FEM). Several surface ratios (geometrical diaphragm surface to electrolyte-diaphragm surface, S/S′) were investigated. The thickness of the diaphragm, L, was also considered.The experimental results show a significant decrease of the apparent resistivity when the ratio S/S′ increases. Similar trend was observed for increasing values of the L/S′ ratio. The numerical simulations can explain the experimental findings and also allow to formulate a general rule for the design of migration and diffusion experiments in porous materials.  相似文献   

16.
Several papers show that the use of lithium limits the development of alkali-silica reaction (ASR) in concrete. The aim of this study is to improve the understanding of lithium's role on the alteration mechanism of ASR.The approach used is a chemical method which allowed a quantitative measurement of the specific degree of reaction of ASR. The chemical concrete sub-system used, called model reactor, is composed of the main ASR reagents: reactive aggregate, portlandite and alkaline solution. Different reaction degrees are measured and compared for different alkaline solutions: NaOH, KOH and LiOH.Alteration by ASR is observed with the same reaction degrees in the presence of NaOH and KOH, accompanied by the consumption of hydroxyl concentration. On the other hand with LiOH, ASR is very limited. Reaction degree values evolve little and the hydroxyl concentration remains about stable.These observations demonstrate that lithium ions have an inhibitor role on ASR.  相似文献   

17.
The primary objective of this study was to ascertain whether the Threshold Alkali Level (TAL) of the concrete aggregates may be taken as a suitable reactivity parameter for the selection of aggregates susceptible of alkali-silica reaction (ASR), even when ASR expansion in concrete develops under restrained conditions. Concrete mixes made with different alkali contents and two natural siliceous aggregates with very different TALs were tested for their expansivity at 38 °C and 100% RH under unrestrained and restrained conditions. Four compressive stress levels over the range from 0.17 to 3.50 N/mm2 were applied by using a new appositely designed experimental equipment. The lowest stress (0.17 N/mm2) was selected in order to estimate the expansive pressure developed by the ASR gel under “free” expansion conditions. It was found that, even under restrained conditions, the threshold alkali level proves to be a suitable reactivity parameter for designing concrete mixes that are not susceptible of deleterious ASR expansion. An empirical relationship between expansive pressure, concrete alkali content and aggregate TAL was developed in view of its possible use for ASR diagnosis and/or safety evaluation of concrete structures.  相似文献   

18.
In this study, the effect of the fiber orientation distribution on the tensile behavior of Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC) was investigated. The tensile behavior was explored separately in two stages; pre-cracking and post-cracking tensile behaviors. Pre-cracking tensile behavior is expressed using the mechanism of elastic shear transfer between the matrix and the fiber in the composites. Post-cracking tensile behavior was expressed as the combined behavior of the resistance by the fibers and the matrix, considering a probability density distribution for the fiber orientation distribution across crack surface and a pullout model of steel fiber. The effect of the fiber orientation distribution was found to be very small on pre-cracking behavior, but to be significant on post-cracking behavior of UHPFRCC. The predicted results were compared with the experimental results, and the comparison presented satisfactory agreement.  相似文献   

19.
Attempts to model ASR expansion are usually limited by the difficulty of taking into account the heterogeneous nature and size range of reactive aggregates. This work is a part of an overall project aimed at developing models to predict the potential expansion of concrete containing alkali-reactive aggregates. The paper gives measurements in order to provide experimental data concerning the effect of particle size of an alkali-reactive siliceous limestone on mortar expansion. Results show that no expansion was measured on the mortars using small particles (under 80 µm) while the coarse particles (0.63-1.25 mm) gave the largest expansions (0.33%). When two sizes of aggregate were used, ASR-expansions decreased with the proportion of small particles. Models are proposed to study correlations between the measured expansions and parameters such as the size of aggregates and the alkali and reactive silica contents. The pessimum effect of reactive aggregate size is assessed and the consequences on accelerated laboratory tests are discussed.  相似文献   

20.
Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the concrete. Fibers are known to significantly affect the workability of concrete. Therefore, an investigation was performed to compare the properties of plain SCC and SCC reinforced with steel fibers. Two mixtures of SCC with different aggregate contents were used as reference. Each of the concretes was tested with four types of steel fibers at different contents in order to answer the question to what extent the workability of SCC is influenced. The slump flow, a fiber funnel and the J-ring test were used to evaluate the material characteristics of the fresh concrete. This paper discusses the suitability of the applied test methods and the effect of the coarse aggregate content, the content and type of steel fibers on the workability of SCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号