共查询到19条相似文献,搜索用时 46 毫秒
1.
提出了基于小波变换提取零件图像特征和用自组织特征映射神经网络实现识别的方法,首先,对零件图像进行小波多尺度边缘检测,提取零件图像的边缘轮廓;然后将被检测的边缘轮廓图像分成若干个子区域并分别统计各子区域的边缘像素量,各子区域中的相对边缘像素系数作为零件的特征,将这些特征作为神经网络的输入样本,由自组织特征映射神经网络实现识别。实验结果表明该方法是有效的。 相似文献
2.
3.
4.
针对机械产品装配中零件和装配体的识别、监测问题,提出一种基于深度图像和像素分类的装配体零件识别及装配监测方法。首先构建装配体深度图像标记样本集,包括合成标记样本集和真实标记样本集;然后提取深度差分特征,利用随机森林分类器对深度图像的像素进行分类,获取像素预测图像;最后通过对比像素预测图像和颜色标签图像对装配体各零件进行识别,并对比待测状态像素预测图像和正确装配像素预测图像,实现对装配过程的监测。为了提高边缘像素点的分类准确率,引入边缘因子。实验结果表明,该方法不但准确率高,而且兼具一定实时性和鲁棒性,在装配维修诱导、装配监测和自动化装配领域具有一定应用价值。 相似文献
5.
为解决后验式场景下的多目标生产调度问题,提出一种基于自组织映射神经网络的策略来生成近似Pareto边界。该方法首先使用拉格朗日松弛法获得若干Pareto解,从而将搜索范围划分为若干区域。对于每一个区域,构造两个并发运行的自组织映射神经网络搜索区域中的Pareto解,在不增加求解时间的情况下提高了求解精度。另外,根据多目标调度问题的特点,改变了神经网络训练过程中邻域的定义,从而加快了求解速度。仿真实验验证了该算法的可行性与有效性。 相似文献
6.
7.
以铣削难加工材料——高锰钢加工过程为研究对象。建立了以铣削力作为监测信号的铣刀磨损监测实验系统。应用小波包理论对铣削力信号进行分析和消噪处理。并提取了信号的能量特征作为神经网络的输入向量。基于神经网络极强的非线性映射能力及分类能力。选用小波包分析与BP网络结合的方式对刀具磨损状态进行识别。建立了模式识别BP网络结构,构造了网络训练样本及测试样本。对网络进行了训练、仿真及验证测试,结果表明该网络能够对刀具磨损状态进行准确的识别。对刀具的在线监测具有良好的现实意义。 相似文献
8.
针对单一特征在进行故障诊断时准确率不高的问题,提出了一种基于自组织神经网络(SOM)的滚动轴承状态评估方法。该方法首先从原始振动信号中提取出多特征数据,运用主成分分析(PCA)方法对多特征数据进行预处理,采用SOM进行网络训练,构建多特征数据的融合模型,输出竞争神经元层的权值矢量;然后,计算每一个样本到竞争神经元层权值矢量的最小欧氏距离,输出最终的融合指标;最后,通过比较待检测样本与正常样本的最小欧氏距离的差异来判断轴承的状态。将该方法应用于滚动轴承状态评估,试验结果表明:融合指标比单一指标对早期故障更加敏感、更加稳健;同时,融合指标能够定量地描述轴承状态的劣化过程。 相似文献
9.
针对影响连续多日每日最大负荷的因素较多且构成复杂,连续多日负荷预测方法少难度大、含节假日的连续多日负荷预测精度低等问题,分析了近几年工作日电力负荷数据特点,研究了自组织特征映射(Self-Organizing Feature Map,SOM)聚类算法并将其用于负荷数据的预处理,研究了节假日负荷的特性,总结了其负荷变化规律并加以区分预测,提出了一种基于自组织特征映射神经网络的连续多日负荷预测新方法。该方法区分普通工作日与节假日,普通工作日采用自组织特征映射神经网络聚类方法对日最大负荷进行特征提取,建立了以周期特征相似的历史数据作为训练样本的神经网络模型,节假日设定假日影响因子单独预测。运用某市近年的负荷数据进行预测,算例结果显示综合预测误差为3.21%,表明该方法预测精度完全满足实际需求,为连续多日最大负荷预测提供了一种可行的方法。 相似文献
10.
基于小波包特征向量与神经网络的滚动轴承故障诊断 总被引:1,自引:0,他引:1
基于故障轴承的特征提取,提出了将小波包分析与神经网络结合的滚动轴承故障诊断方法.对滚动轴承信号进行3层小波包分解,构造小波包特征向量作为故障样本,用训练好的BP神经网络进行故障诊断,试验结果表明,该方法能够有效地诊断出滚动轴承的故障类型. 相似文献
11.
变速器作为汽车动力传递系统中的关键部件,其振动和噪声直接影响着汽车的性能。由发动机输入到变速器的转速很多情况下是变化的,这使得这种工况下的变速器故障诊断更加复杂。针对这个问题,提出了基于卷积神经网络(convolutional neural network,CNN)的变速器变转速工况下的故障分类识别方法:在变转速下,采集了变速箱多种故障状态下的振动信号,对各类信号进行时频变换得到时频矩阵,并利用CNN实现多类故障的分类。并研究了CNN结合不同时频方法时的识别性能,结果表明,连续小波变换(continuous wavelet transform,CWT)与CNN结合的方法对变转速下的时频图识别性能最好。 相似文献
12.
13.
基于神经网络的数字识别 总被引:1,自引:0,他引:1
人工神经网络是信息科学、脑科学、神经心理学等诸多学科近年来共同关注的研究热点.由于神经网络具有良好的抽象分类特性,使其成为解决图像识别相关问题的有效工具.在简述图像识别过程的基础上,重点讨论利用BP神经网络对图像进行识别,用MATLAB完成对神经网络的训练和测试,获得比较满意的结果. 相似文献
14.
15.
基于MATLAB GUI的零件图像识别 总被引:1,自引:0,他引:1
零件图像识别有多种方法,其关键是零件图像的特征提取,为此提出了基于图像边缘检测提取零件图像特征和用径向基神经网络实现识别的方法.首先对零件图像进行边缘检测,提取零件图像的边缘轮廓;然后将被检测的边缘轮廓图像分成若干个子区域并分别统计各子区域的边缘像素量,各子区域中的相对边缘像素系数作为零件的特征,将这些特征作为神经网络的输入样本,由径向基神经网络实现识别;最后由GUI完成零件图像的识别,实验结果证明是有效的. 相似文献
16.
基于神经网络的煤岩界面识别 总被引:2,自引:0,他引:2
主要论述了BP网络在煤岩界面识别中的应用,根据本问题的特点设计了BP网络结构,并提出了一种改进的BP算法,使收敛速度加快,性能有所提高。 相似文献
17.
提出了一种应用BP神经网络识别沥青路面破损图像的图像分割方法.将路面图像等分,用灰度方差值描述子块图像特征,利用BP神经网络对子块图像进行模式分类,并将图像子块模式矩阵的不变矩作为图像的整体特征,在此基础上设计了基于全局优化算法的前馈神经网络分类器,并进行了图像识别试验,对二值图像进行特征提取,提出了学习算法,以加快收敛速度,从而实现图像识别. 相似文献
18.
随着网络越来越发达,人们之间的交流越来越方便,网络交易也越来越红火,与此同时的网络安全问题也越来越突出,大量的信用卡号码、密码和身份证件被窃取和盗用,给国家和个人带来了巨大的损失。由于每个人的签名笔迹都很难模仿和相对稳定性,利用其特征值设计一种手写体签名识别系统,效果良好。 相似文献
19.
提出一种基于神经元网络的轴类零件分类模型,采用基于反向传播算法的多层前馈式神经网络(BP)和自适应共振理论网络(ART1)实现基于特征的轴类零件家族的动态聚类与从聚类模板到每一事例的索引,完成轴类零件的实例分类三层模型。这种并行、分布式的神经网络分类处理过程大大提高了推理效率,为实例推理提供了崭新的思路。 相似文献