首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
成功地制作了有效保护环结构InP/InGaAsP/InGaAs雪崩光电二极管。该器件是平面结构,在倍增区,其n-InP层被n~--InP所掩埋。采用两步液相外延生长工艺,在(111)A晶向InP衬底上生长了这种结构。n~--InP二次生长之前,采用回熔技术来减少暗电流。  相似文献   

2.
用液相外延和锌扩散技术成功地制造了具有 In_(0·53)Ga_(0·47)As 光吸收层和 InP 雪崩倍增层的异质结构雪崩光电二极管(HAPD)。这种 HAPD的雪崩增益已经高达1.6×10~4,暗电流密度在0.9V_B 下低至1×10~(-5)A/cm~2。  相似文献   

3.
采用液相外延法和台面工艺制作了具有中间带隙“梯度层”的倍增区与吸收区分离的长波长InGaAs/InGaAsP/InP雪崩光电二极管(简称SAGM-APD)已经获得初步成功。量子效率67%;0.9V_B时的暗电流<100nA;过剩噪声因子F=5;最大倍增因子M=25;上升和下降时间各为300ps。结果表明,这种新型材料制作的雪崩光电二极管在性能上优于Ge-APD。  相似文献   

4.
基于InGaAs/InP吸收区、渐变区、电荷区和倍增区分离雪崩光电二极管(SAGCMAPD)器件结构,利用数值计算方法,模拟了各层参数对器件频率响应特性的影响.模拟结果表明,吸收层、倍增层厚度及电荷层面电荷密度可影响器件的-3 dB带宽;随增益的增加,器件带宽会逐渐降低;电荷层面电荷密度对器件击穿电压有明显影响.结合此模拟结果,制作出了高速InGaAs/InP雪崩光电二极管,并对器件进行了封装测试.测试结果表明,该结果与模拟结果相吻合.器件击穿电压为30 V;在倍增因子为1时,器件响应度大于0.8 A/W;在倍增因子为9时,器件暗电流小于10 nA,-3 dB带宽大于10 GHz,其性能满足10 Gbit/s光纤通信应用要求.  相似文献   

5.
利用低压MOCVD技术制备PIN结构的InP基InGaAs外延材料。采用分层吸收渐变电荷倍增(SAGCM)结构,通过两次Zn扩散、多层介质膜淀积、Au/Zn p型欧姆接触、Au/Ge/Ni n型欧姆接触等标准半导体平面工艺,设计制造正入射平面In_(0.53)Ga_(0.47)As/InP雪崩光电二极管器件。该器件采用与InP衬底晶格匹配的In_(0.53)Ga_(0.47)As材料做吸收层,InP材料做倍增层,同时引入InGaAsP梯度层。探测器件光敏面直径50μm,器件测试结果表明该器件光响应特性正常,击穿电压约43 V,在低于击穿电压3 V左右可以得到大约10 A/W的光响应度,在0 V到小于击穿电压1 V的偏压范围内,暗电流只有1 nA左右。光电二极管在8 GHz以下有平坦的增益,适用于5 Gbit/s光通信系统。  相似文献   

6.
本文评述了长波长光纤系统的改进型Ge雪崩光电二极管(Ge-APD)和InGaAs/InP雪崩光电二极管(InGaAs/InP-APD)。P~ -n型和n~ -n-p~ 型锗雪崩光电二极管在1.0~1.5μm波长区比通常的n~ -p型Ge-APD的倍增噪声低。吸收区和倍增区分开的InGaAs/InP—APD在1.0~1.6μm波长区比Ge—APD有较低的暗电流和较低的倍增噪声。这种雪崩光电二极管与Ge雪崩光电二极管相比能改进3~4dB的最小可探测功率。  相似文献   

7.
IaGaAs和InGaAsP异质结雪崩光电二极管的性能受到隧道效应、微等离子体和杂质等的严重影响。采用光吸收区电倍增区分离的结构。以宽能隙的InP为电倍增区,窄能隙的IaGaAs或InGaAsP为光吸收区,P型扩散杂质低于临界值N_D~ ,以及雪崩区的适当厚度,就能减小或避免隧道效应产生。器件的微等离子体可以通过采用低位错或无位错的衬底,生长质量优良的外延层。扩散杂质均匀,选用平面保护环或倒台面型来减少或消除。从而得到高性能的雪崩光电器件。现在雪崩增益高于3000,暗电流为2pA(0.5V_B)、离化系数比为0.3~0.5左右的APA就是SAM(吸收区倍增区分离)扩镉的平面保护环结构。  相似文献   

8.
美国德克萨斯大学和朗讯科技公司的研究人员用端照射波导结构制作了波导约束 In Ga As/ In Al As雪崩光电二极管 (APD)。该器件综合了波导与雪崩光电二极管的特征 ,可望用作对 1.55μm通信波段快速灵敏的光电二极管。该器件建立在独立吸收负载倍增 (SACM)电路的基础上 ,全增益带宽 2 7GHz,增益 -带宽乘积 12 0 GHz。因为 In Al As可透过 1.55μm光 ,且过量噪声低 ,所以选它作器件的倍增区和包覆材料。在 In P衬底和缓冲层上用分子束外延生长各层。完全的波导独立吸收负载倍增雪崩光电二极管在 90 %击穿时暗电流保持在 50 n A以下 …  相似文献   

9.
雪崩式光电二极管微型组件,在光纤通信网中,常常作为变换器使用,其工作波段为1.0至1.3微米。这种光电二极管组件采用Ⅲ-Ⅴ族化合物制成,它包含一个InP雪崩区和一个独立的InGaAsP吸收区(如图1所示)。采用混合结构的目的在于将漏电流大大减小。Zn重掺杂InP基片、N型InP层、P型InP层和N型InGaAsP层组成。Zn从基片向N-InP外延层扩散,形成了P-InP层;另外,还剩下一层N-InP,其厚度则应符合设计的要求,大致为1.4微米。 光通过基片照射到雪崩式光电二极管上,其响应速度与量子效率均可达到最佳状态。若外加偏压接近于雪崩电压,则耗尽区向InGaAsP层扩展,并恰好可扩展到InGaAsP层中;如果耗尽区扩展太深,那么漏  相似文献   

10.
本文讨论了InP/InGaAsP/InGaAs/InP SAGM-APD结构的抗回熔生长,并解决了InP在InGaAs上液相外延生长时的回熔问题。同时,研究了各外延层参数的控制。结果制得的器件,其最大雪崩倍增20,0.9V_B下暗电流14nA,响应度大于0.6A/W。  相似文献   

11.
叙述了用液相外延(LPE)制作 InGaAsP/InP 雪崩光电二极管(APD)的物理性能。分析了该器件的设计参数。介绍了器件结构、器件制作中 LPE 生长条件及器件性能。最后,评述了器件发展水平及改进意见。  相似文献   

12.
根据器件结构的优化设计,严格控制生长参数以及理想的器件制备工艺获得了低漏电高增益InGaAs/InP SAGM雪崩光电二极管。测量了百余支器件,0.9V_b下漏电流I_d<20nA;响应度~(0.7—0.8)mA/mW,最大倍增30—85(入射光波长1.3μm,功率1.6μW),参与倍增的暗电流l_(dm)最小可达0.25nA。  相似文献   

13.
研制了高速、高效、低噪声的InGaAs/InGaAsP/InP长波长(1.0~1.7μm)台面型雪崩光电二极管(φ=75μm),器件采用分离的吸收区、雪崩区和能隙过渡区的SAGM结构。研究了器件最佳结构参数设置、在InP上匹配生长InGaAs、InGa AsP及其厚度和载流子浓度的控制问题。器件最大倍增因子大于50,灵敏度大于0.70μA/μW,暗电流I_D的典型值约为20nA(V_r=0.9V_B)。  相似文献   

14.
建立了SACM型In0.53Ga0.47As/In0.52Al0.48As雪崩光电二极管(APD)的分析模型,通过数值研究和理论分析设计出高性能的In0.53Ga0.47As/In0.52Al0.48As APD。器件设计中,一方面添加了In0.52Al0.48As势垒层来阻挡接触层的少数载流子的扩散,进而减小暗电流的产生;另一方面,雪崩倍增区采用双层掺杂结构设计,优化了器件倍增区的电场梯度分布。最后,利用ATLAS软件较系统地研究并分析了雪崩倍增层、电荷层以及吸收层的掺杂水平和厚度对器件电场分布、击穿电压、IV特性和直流增益的影响。优化后APD的单位增益可以达到0.9 A/W,在工作电压(0.9 Vb)下增益为23.4,工作暗电流也仅是纳安级别(@0.9 Vb)。由于In0.52Al0.48As材料的电子与空穴的碰撞离化率比InP材料的差异更大,因此器件的噪声因子也较低。  相似文献   

15.
基于InGaAs/InP雪崩光电二极管,讨论吸收层厚度和少子寿命以及倍增层厚度和少子寿命对暗电流的影响。研究表明,吸收层厚度影响热产生复合(shockley-read-hall, SRH)和缺陷辅助隧穿(trap-assisted tunneling, TAT)暗电流大小,而倍增层厚度则对TAT和直接隧穿(band-band tunneling, BBT)暗电流影响较大。少子寿命可以等效为缺陷的影响,因而对与缺陷相关的SRH和TAT暗电流影响较大。对暗电流机理的分析,为研究低暗电流高信噪比的雪崩器件提供良好的理论预测。  相似文献   

16.
吴孟  林峰  杨富华  曹延名 《半导体学报》2008,29(9):1686-1691
通过有限元分析设计了具有抑制边缘击穿的层叠边缘结结构的平面型InGaAs/InP盖革雪崩光电二极管. 通过仔细地控制中央区域结的深度,光电二极管的击穿电压降至54.3V; 同时通过调整InP倍增层的掺杂浓度和厚度,沿器件中轴的电场分布也得到了控制. 在有源区的边缘采用层叠pn结结构有效地抑制了过早边缘击穿现象. 仿真模拟显示四层层叠结构是边缘击穿抑制效果和制造工艺复杂度的一个好的折衷方案,该结构中峰值电场强度为5.2E5kV/cm,空穴离化积分最大值为1.201. 本文提供了一种设计高性能的InGaAs/InP光子计数雪崩光电二极管的有效方法.  相似文献   

17.
石柱  代千  宋海智  谢和平  覃文治  邓杰  柯尊贵  孔繁林 《红外与激光工程》2017,46(12):1220001-1220001(7)
通过对InGaAsP/InP单光子雪崩二极管(SPAD)的探测效率、暗计数率等基本特性与该器件的禁带宽度、电场分布、雪崩长度、工作温度等参数之间关系的分析,采用比通常的InxGaAs (x=0.53)材料具有更宽带隙的InxGa1-xAsyP1-y(x=0.78,y=0.47)材料作为光吸收层,并且精确控制InP倍增层的雪崩长度,有效地降低了SPAD的暗计数率。其中InGaAsP材料与InP材料晶格匹配良好,可在InP衬底上外延生长高质量的InGaAsP/InP异质结,InGaAsP材料的带隙为Eg=1.03 eV,截止波长为1.2 m,可满足1.06 m单光子探测需要。同时,通过设计并研制出1.06 m InGaAsP/InP SPAD,对其特性参数进行测试,结果表明,当工作温度为270 K时,探测效率20%下的暗计数率约20 kHz。因此基于时间相关单光子计数技术的该器件可在主动淬灭模式下用于随机到达的光子探测。  相似文献   

18.
可作光子计数的雪崩光电二极管   总被引:1,自引:0,他引:1  
对于光电倍增管不适用的高灵敏度弱光探测应用,存在一种固体替代器件,即雪崩光电二极管。这种器件在半导体内产生光电倍增,而光电倍增管在真空中产生电子倍增。雪崩光电二极管具有与半导体技术有关的微型化优点。由于这种器件能对单光子计数和探测很短时间间隔,它们已在光雷达、测距仪探测器和超灵敏光谱学方面找到日益增长的应用。另外,雪崩光电二极管在光纤通讯方面正与PIN光电二极管相竞争。雪崩光电二极管如何工作与任何光电二极管,样,雪崩光电二极管中由两类半导体组成的p-n结只允许电流在一个方向流动。光电二极管由一个掺有…  相似文献   

19.
设计并制作出一种有新型保护结构的平面InP/InGaAs雪崩光电二极管。该器件在P-n结下面有一被隐埋的n-InP层和n~--InP倍增区,这样便获得了良好的保护作用。器件的整个有源区均呈现均匀倍增,最大倍增因子为30,在击穿电压的90%处获得了大约20nA的低暗电流,平坦的频率响应高达1GHz。在倍增因子达到17时测试了倍增噪声。  相似文献   

20.
通过有限元分析设计了具有抑制边缘击穿的层叠边缘结结构的平面型InGaAs/InP盖革雪崩光电二极管.通过仔细地控制中央区域结的深度,光电二极管的击穿电压降至54.3V;同时通过调整InP倍增层的掺杂浓度和厚度,沿器件中轴的电场分布也得到了控制.在有源区的边缘采用层叠pn结结构有效地抑制了过早边缘击穿现象.仿真模拟显示四层层叠结构是边缘击穿抑制效果和制造工艺复杂度的一个好的折衷方案,该结构中峰值电场强度为5.2×105kV/cm,空穴离化积分最大值为1.201.本文提供了一种设计高性能的InGaAs/InP光子汁数雪崩光电二极管的有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号